中国激光, 2018, 45 (6): 0602005, 网络出版: 2018-07-05   

38MnVS6钢中硫元素扩散对激光熔覆涂层形貌和组织的影响 下载: 1037次

Effect of Sulfur Diffusion in 38MnVS6 Steel on Morphology and Microstructure of Laser Cladding Layers
陈茹 1,2虞钢 1,2,*何秀丽 1,2甘政涛 3李少霞 1,2
作者单位
1 中国科学院力学研究所, 北京 100190
2 中国科学院大学工程科学学院, 北京 100049
3 美国西北大学机械工程系, 埃文斯顿 60208 美国
引用该论文

陈茹, 虞钢, 何秀丽, 甘政涛, 李少霞. 38MnVS6钢中硫元素扩散对激光熔覆涂层形貌和组织的影响[J]. 中国激光, 2018, 45(6): 0602005.

Ru Chen, Gang Yu, Xiuli He, Zhengtao Gan, Shaoxia Li. Effect of Sulfur Diffusion in 38MnVS6 Steel on Morphology and Microstructure of Laser Cladding Layers[J]. Chinese Journal of Lasers, 2018, 45(6): 0602005.

参考文献

[1] Kusinski J, Kac S, Kopia A, et al. Laser modification of the materials surface layer—A review paper[J]. Bulletin of the Polish Academy of Sciences, 2012, 60(4): 711-728.

    Kusinski J, Kac S, Kopia A, et al. Laser modification of the materials surface layer—A review paper[J]. Bulletin of the Polish Academy of Sciences, 2012, 60(4): 711-728.

[2] Zhao G L, Zou Y, Zou Z D, et al. Research on in situ synthesised (Ti,V) C/Fe composite coating by laser cladding[J]. Materials Science and Technology, 2014, 31(11): 1329-1334.

    Zhao G L, Zou Y, Zou Z D, et al. Research on in situ synthesised (Ti,V) C/Fe composite coating by laser cladding[J]. Materials Science and Technology, 2014, 31(11): 1329-1334.

[3] 段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

    段晓溪, 高士友, 顾勇飞, 等. 激光熔覆316L+SiC的强化机制和摩擦磨损性能研究[J]. 中国激光, 2016, 43(1): 0103004.

    Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004.

    Duan X X, Gao S Y, Gu Y F, et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 2016, 43(1): 0103004.

[4] Lee Y S, Nordin M, Babu S S, et al. Influence of fluid convection on weld pool formation in laser cladding[J]. Welding Journal, 2014, 93: 292-300.

    Lee Y S, Nordin M, Babu S S, et al. Influence of fluid convection on weld pool formation in laser cladding[J]. Welding Journal, 2014, 93: 292-300.

[5] Xu Y L, Dong Z B, Wei Y H, et al. Marangoni convection and weld shape variation in A-TIG welding process[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(2): 178-186.

    Xu Y L, Dong Z B, Wei Y H, et al. Marangoni convection and weld shape variation in A-TIG welding process[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(2): 178-186.

[6] Dai D H, Gu D D. Tailored reinforcement/matrix interface and thermodynamic mechanism during selective laser melting composites[J]. Materials Science and Technology, 2016, 32(7): 617-628.

    Dai D H, Gu D D. Tailored reinforcement/matrix interface and thermodynamic mechanism during selective laser melting composites[J]. Materials Science and Technology, 2016, 32(7): 617-628.

[7] Yu J J, Ruan D F, Li Y R, et al. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient[J]. Experimental Thermal and Fluid Science, 2015, 61: 79-86.

    Yu J J, Ruan D F, Li Y R, et al. Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient[J]. Experimental Thermal and Fluid Science, 2015, 61: 79-86.

[8] He X L, Song L J, Yu G, et al. Solute transport and composition profile during direct metal deposition with coaxial powder injection[J]. Applied Surface Science, 2011, 258(2): 898-907.

    He X L, Song L J, Yu G, et al. Solute transport and composition profile during direct metal deposition with coaxial powder injection[J]. Applied Surface Science, 2011, 258(2): 898-907.

[9] 彭进, 王星星, 李刚, 等. 激光填丝焊对熔池动态行为及焊缝成形的影响[J]. 中国激光, 2017, 44(11): 1102004.

    彭进, 王星星, 李刚, 等. 激光填丝焊对熔池动态行为及焊缝成形的影响[J]. 中国激光, 2017, 44(11): 1102004.

    Peng J, Wang X X, Li G, et al. Effect of laser welding with filler wire on molten pool dynamic behavior and weld formation[J]. Chinese Journal of Lasers, 2017, 44(11): 1102004.

    Peng J, Wang X X, Li G, et al. Effect of laser welding with filler wire on molten pool dynamic behavior and weld formation[J]. Chinese Journal of Lasers, 2017, 44(11): 1102004.

[10] Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709-722.

    Gan Z T, Liu H, Li S X, et al. Modeling of thermal behavior and mass transport in multi-layer laser additive manufacturing of Ni-based alloy on cast iron[J]. International Journal of Heat and Mass Transfer, 2017, 111: 709-722.

[11] Sahoo P, Debroy T, Mcnallan M J. Surface-tension of binary metal-surface-active solute systems under conditions relevant to welding metallurgy[J]. Metallurgical Transactions B, 1988, 19(3): 483-491.

    Sahoo P, Debroy T, Mcnallan M J. Surface-tension of binary metal-surface-active solute systems under conditions relevant to welding metallurgy[J]. Metallurgical Transactions B, 1988, 19(3): 483-491.

[12] Lu S P, Fujii H, Nogi K. Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding[J]. Scripta Materialia, 2004, 51(3): 271-277.

    Lu S P, Fujii H, Nogi K. Sensitivity of Marangoni convection and weld shape variations to welding parameters in O2-Ar shielded GTA welding[J]. Scripta Materialia, 2004, 51(3): 271-277.

[13] Mills K C, Keene B J, Brooks R F, et al. Marangoni effects in welding[J]. Philosophical Transactions of the Royal Society A, 1998, 356(1739): 911-925.

    Mills K C, Keene B J, Brooks R F, et al. Marangoni effects in welding[J]. Philosophical Transactions of the Royal Society A, 1998, 356(1739): 911-925.

[14] Lienert T J, Burgardt P, Harada K L, et al. Weld bead center line shift during laser welding of austenitic stainless steels with different sulfur content[J]. Scripta Materialia, 2014, 71: 37-40.

    Lienert T J, Burgardt P, Harada K L, et al. Weld bead center line shift during laser welding of austenitic stainless steels with different sulfur content[J]. Scripta Materialia, 2014, 71: 37-40.

[15] Zhang S, Wu C L, Yi J Z, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surface & Coatings Technology, 2015, 262: 64-69.

    Zhang S, Wu C L, Yi J Z, et al. Synthesis and characterization of FeCoCrAlCu high-entropy alloy coating by laser surface alloying[J]. Surface & Coatings Technology, 2015, 262: 64-69.

[16] Gan Z T, Yu G, He X L, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104: 28-38.

    Gan Z T, Yu G, He X L, et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer, 2017, 104: 28-38.

[17] Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J]. Computational Materials Science, 2009, 46(2): 495-506.

    Kumar A, Roy S. Effect of three-dimensional melt pool convection on process characteristics during laser cladding[J]. Computational Materials Science, 2009, 46(2): 495-506.

[18] Abderrazak K, Bannour S, Mhiri H, et al. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy[J]. Computational Materials Science, 2009, 44(3): 858-866.

    Abderrazak K, Bannour S, Mhiri H, et al. Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy[J]. Computational Materials Science, 2009, 44(3): 858-866.

[19] 夏胜全, 何建军, 王巍, 等. 激光深熔焊熔池三维瞬态行为数值模拟[J]. 中国激光, 2016, 43(11): 1102004.

    夏胜全, 何建军, 王巍, 等. 激光深熔焊熔池三维瞬态行为数值模拟[J]. 中国激光, 2016, 43(11): 1102004.

    Xia S Q, He J J, Wang W, et al. Simulation of three-dimensional transient behavior of molten pool in laser deep penetration welding[J]. Chinese Journal of Lasers, 2016, 43(11): 1102004.

    Xia S Q, He J J, Wang W, et al. Simulation of three-dimensional transient behavior of molten pool in laser deep penetration welding[J]. Chinese Journal of Lasers, 2016, 43(11): 1102004.

[20] Nogi K, Ogino K, Mclean A, et al. The temperature-coefficient of the surface-tension of pure liquid-metals[J]. Metallurgical Transactions B, 1986, 17(1): 163-170.

    Nogi K, Ogino K, Mclean A, et al. The temperature-coefficient of the surface-tension of pure liquid-metals[J]. Metallurgical Transactions B, 1986, 17(1): 163-170.

[21] Gan Z T, Yu G, He X L, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2017, 86: 206-214.

    Gan Z T, Yu G, He X L, et al. Surface-active element transport and its effect on liquid metal flow in laser-assisted additive manufacturing[J]. International Communications in Heat and Mass Transfer, 2017, 86: 206-214.

陈茹, 虞钢, 何秀丽, 甘政涛, 李少霞. 38MnVS6钢中硫元素扩散对激光熔覆涂层形貌和组织的影响[J]. 中国激光, 2018, 45(6): 0602005. Ru Chen, Gang Yu, Xiuli He, Zhengtao Gan, Shaoxia Li. Effect of Sulfur Diffusion in 38MnVS6 Steel on Morphology and Microstructure of Laser Cladding Layers[J]. Chinese Journal of Lasers, 2018, 45(6): 0602005.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!