中国激光, 2015, 42 (12): 1202008, 网络出版: 2015-12-08  

不同偏振状态下Yb3+∶KGd(WO4)2晶体的无热

Study on Thermal-Lens-Free Orientations of a Yb3+∶KGd(WO4)2 with Different Polarized Directions
作者单位
西南技术物理研究所, 四川 成都 610000
摘要
利用Yb3+∶KGd(WO4)2晶体的热膨胀系数各向异性和折射率温度梯度为负值的特点,就可能找到被光抽运时热透镜效应为零的特定方向,此方向即为“无热透镜方向”。鉴于前人的理论计算中存在着一些缺陷,利用最小二乘法和二阶张量旋转法,精确计算了Yb3+∶KGd(WO4)2晶体的热膨胀张量以及在不同偏振状态下的无热透镜方向:m偏振时,在p-g 平面内与p 轴成±46.3°的方向;p 偏振时,在m-g 平面内与m 轴顺时针成24.9°以及与m 轴逆时针成81.2°的方向;g 偏振时不存在无热透镜方向。将之与前人的计算结果进行了比较,指出了其理论模型中存在的缺陷。计算了p 偏振时在m-g 平面内与m 轴顺时针成17°的方向上传播以及m 偏振时b 方向传播的单位光程变化值,并与前人已发表的理论与实验结果做了对比分析,证实了所建理论体系的有效性。
Abstract
Using the anisotropic thermal expansion coefficients and the negative refractive index gradients in temperature of an optical-pumped Yb3+∶KGd(WO4)2, it is possible to find some special directions without thermallyinduced lens effects which is called“the thermal-lens-free orientation”. Considering there are some defects in the theoretical models created by other researchers, the thermal expansion tensors and thermal-lens-free orientations at different polarized directions have been evaluated by using the least square method and two-order tensor rotation approach. The thermal-lens-free orientations have been determined as follows: The directions located ±46.3° from the p axis in the p-g plane when the light is polarized in the m axis, the directions located 24.9° clockwise from the m axis in the m-g plane and 81.2° counterclockwise from the m axis in the m-g plane when the light is polarized in the p direction. When the light is polarized along the g direction, there is no thermal-lens-free direction for the crystal. The theoretical results in the previous reports are compared and some defects are also pointed out. The optical path changes have been analyzed along the directions of both 17° rotated clockwise from the m axis in the m-g plane (p-polarized) and the b axis (m-polarized) to compare with the previous experimental results. The effectiveness of our theoretical simulation has been therefore demonstrated through the comparison analyses.
参考文献

[1] P A Loiko, V V Filippov, K V Yumashev. Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method[J]. Applied Optics, 2012, 51(15): 2951-2957.

[2] P A Loiko, K V Yumashev, N V Kuleshov, et al.. Thermal lensing study and athermal directions in flashlamp-pumped Nd∶KGd (WO4)2 laser crystal[J]. Appl Phys B, 2012, 106(4): 881-886.

[3] P A Loiko, K V Yumashev, N V Kuleshov, et a1.. Thermo-optic dispersion formulas for monoclinic double tungstates KRe(WO4)2 where Re=Gd, Y, Lu, Yb[J]. Optical Materials, 2011, 33(11): 1688-1694.

[4] P A Loiko, K V Yumashev, N V Kuleshov, et al.. Detailed characterization of thermal expansion tensor in monoclinic KRe(WO4)2 (where Re=Gd, Y, Lu, Yb)[J]. Optical Materials, 2011, 34(1): 23-26.

[5] D Stuc inskas , R Antipenkov, A Varanavicius. Thermal lensing in high-power diode-pumped Yb∶KGW laser[J]. Lithuanian Journal of Physics, 2010, 50(2): 191-199.

[6] 肖虎, 张汉伟, 王小林, 等. 特殊波长掺镱光纤激光器研究[J]. 中国激光, 2013, 40(9): 0902008.

    Xiao Hu, Zhang Hanwei, Wang Xiaolin, et al.. Study on Ytterbium-doped fiber lasers of special wavelength[J]. Chinese J Lasers, 2013, 40(9): 0902008.

[7] 孙若愚, 金东臣, 曹镱, 等. 百瓦级1030 nm 皮秒脉冲掺镱全光纤激光器[J]. 中国激光, 2014, 41(10): 1002004.

    Sun Ruoyu, Jin Dongchen, Cao Yi, et al.. Hundred-watt-level 1030 nm ytterbium-doped picosecond all-fiber lasersun ruoyu[J]. Chinese J Lasers, 2014, 41(10): 1002004.

[8] 连富强, 余锦, 牛岗, 等. 超短脉冲偏振保持掺镱光纤激光器[J]. 中国激光, 2013, 40(s1): s102002.

    Lian Fuqiang, Yu Jin, Niu Gang, et al.. Ultrafast all-polarization maintaining Yb-doped fiber laser[J]. Chinese J Lasers, 2013, 40(s1): s102002.

[9] G Paunescu, J Hein, R Sauerbrey. 100-fs diode-pumped Yb∶KGW mode-locked laser[J]. Applied Physics B, 2004, 79(5): 555-558.

[10] Julius Vengelis, Ignas Stuc inskas , Karolina Stankevic iūtè, et al.. Characteristics of optical parametric oscillators synchronously pumped by second harmonic of femtosecond Yb∶KGW laser[J]. Optics Communications, 2014, 338: 277-287.

[11] Major Arkady, Barzda Virginijus, Piunno Paul A E, et al.. An extended cavity diode-pumped femtosecond Yb:KGW laser for applications in optical DNA sensor technology based on fluorescence lifetime measurements[J]. Optics Express, 2006, 14(12): 5285-5294.

[12] J E Hellstr m, S Bjurshagen, V Pasiskevicius, et al.. Efficient Yb∶KGW lasers end-pumped by high-power diode bars[J]. Applied Physics B, 2006, 83(2): 235-239.

[13] Steven R Bowman. Lasers without internal heat generation[J]. IEEE Journal of Quantum Electronics, 1999, 35(1): 115-122.

[14] Steven R Bowman, Neil W Jenkins, Shawn P O′ Connor, et al.. Sensitivity and stability of a radiation-balanced laser system[J]. IEEE Journal of Quantum Electronics, 2002, 38(10): 1339-1348.

[15] Steven R Bowman, Shawn P O′ Connor, Subrat Biswal, et al.. Minimizing heat generation in solid-state lasers[J]. IEEE Journal of Quantum Electronics, 2010, 46(7): 1076-1085.

[16] Galina Nemova, Raman Kashyap. Thin-disk athermal laser system[J]. Optics Communications, 2014, 319: 100-105.

[17] Sébastien Chenais, Francois Balembois, Frédéric Druon, et al.. Thermal lensing in diode-pumped ytterbium lasers—part ii: Evaluation of quantum efficiencies and thermo-optic coefficients[J]. IEEE Journal of Quantum Electronics, 2004, 40(9): 1235-1243.

[18] Sébastien Chenais, Francois Balembois, Frédéric Druon, et al.. Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements[J]. IEEE Journal of Quantum Electronics, 2004, 40(9): 1217-1234.

[19] M C Pujol, X Mateos, R Solé, et al.. Linear thermal expansion tensor in KRE(WO4)2 (RE=Gd, Y, Er, Yb) monoclinic crystals[J]. Materials Science Forum, 2001, 378-381: 710-717.

[20] Subrat Biswal, Shawn P O′ Connor, Steven R Bowman. Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate[J]. Appl Opt, 2005, 44(15): 3093-3097.

[21] J E Hellstr m, S Bjurshagen, V Pasiskevicius. Laser performance and thermal lensing in high-power diode-pumped Yb∶KGW with athermal orientation[J]. Appl Phys B, 2006, 83(1): 55-59.

[22] 周沐, 王晓峰, 谭吉春. Yb∶KGW 激光晶体无热方向的计算与分析[J]. 应用光学, 2008, 29(1): 0081-0085.

    Zhou Mu, Wang Xiaofeng, Tan Jichun. Calculation and analysis of athermal directions of Yb∶KGW laser crystal[J]. Journal of Applied Optics, 2008, 29(1): 0081-0085.

[23] M C Pujol, R Solé, J Massons, et al.. Structural study of monoclinic KGd(WO4)2 and effects of lanthanide substitution[J]. J Appl Cryst, 2001, 34(1): 1-6.

[24] 陈纲, 廖理几, 郝伟. 晶体物理学基础[M]. 北京: 科学出版社, 2007: 635-639.

    Chen Gang, Liao Liji, Hao Wei. The Basis of Crystal Physics[M]. Beijing: Science Press, 2007: 635-639.

[25] 周沐. 辐射平衡激光器理论及荧光制冷型Yb∶KGW 激光器设计[D]. 长沙: 国防科技大学, 2009: 42-48.

    Zhou Mu. Radiation Balanced Laser′s Theory and Yb∶KGW Fluorescence Cooling Laser′s Design[D]. Changsha: National University of Defense Technology, 2009: 42-48.

[26] V V Filippov. Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating[J]. Applied Optics, 2013, 52(18): 4377- 4384.

高明, 王浟, 蒋志刚, 韩聚洪, 安国斐, 薛亮平, 张伟, 蔡和, 王宏元, 周杰. 不同偏振状态下Yb3+∶KGd(WO4)2晶体的无热[J]. 中国激光, 2015, 42(12): 1202008. Gao Ming, Wang You, Jiang Zhigang, Han Juhong, An Guofei, Xue Liangping, Zhang Wei, Cai He, Wang Hongyuan, Zhou Jie. Study on Thermal-Lens-Free Orientations of a Yb3+∶KGd(WO4)2 with Different Polarized Directions[J]. Chinese Journal of Lasers, 2015, 42(12): 1202008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!