Photonics Research, 2015, 3 (5): 05000234, Published Online: Jan. 6, 2016   

High-resolution pseudo-inverse ghost imaging Download: 796次

Author Affiliations
Key Laboratory for Quantum Optics and Center for Cold Atom Physics of CAS, Shanghai Institute of Optics andFine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract
We present a pseudo-inverse ghost imaging (PGI) technique which can dramatically enhance the spatial transverse resolution of pseudo-thermal ghost imaging (GI). In comparison with conventional GI, PGI can break the limitation on the imaging resolution imposed by the speckle’s transverse size on the object plane and also enables the reconstruction of an N-pixel image from much less than N measurements. This feature also allows high-resolution imaging of gray-scale objects. Experimental and numerical data assessing the performance of the technique are presented.
References

[1] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004).

[2] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).

[3] D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).

[4] D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated twophoton imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).

[5] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005).

[6] M. D. Angelo and Y. H. Shih, “Quantum imaging,” Laser Phys. Lett. 2, 567–596 (2005).

[7] W. Gong, P. Zhang, X. Shen, and S. Han, “Ghost ‘pinhole’ imaging in Fraunhofer region,” Appl. Phys. Lett. 95, 071110 (2009).

[8] O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).

[9] W. Gong and S. Han, “A method to improve the visibility of ghost images obtained by thermal light,” Phys. Lett. A. 374, 1005–1008 (2010).

[10] J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process. 11, 949–993 (2012).

[11] N. Tian, Q. Guo, A. Wang, D. Xu, and L. Fu, “Fluorescence ghost imaging with pseudothermal light,” Opt. Lett. 36, 3302–3304 (2011).

[12] W. Gong and S. Han, “Correlated imaging in scattering media,” Opt. Lett. 36, 394–396 (2011).

[13] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).

[14] C. Zhao, W. Gong, M. Chen, E. Li, H. Wang, W. Xu, and S. Han, “Ghost imaging lidar via sparsity constraints,” Appl. Phys. Lett. 101, 141123 (2012).

[15] W. Gong, C. Zhao, J. Jiao, E. Li, M. Chen, H. Wang, W. Xu, and S. Han, “Three-dimensional ghost imaging ladar,” arXiv: 1301.5767 (2013).

[16] P. Zerom, K. W. C. Chan, J. C. Howell, and R. W. Boyd, “Entangled-photon compressive ghost imaging,” Phys. Rev. A 84, 061804 (2011).

[17] J. Du, W. Gong, and S. Han, “The influence of sparsity property of images on ghost imaging with thermal light,” Opt. Lett. 37, 1067–1069 (2012).

[18] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010).

[19] S. Li, X. Yao, W. Yu, L. Wu, and G. Zhai, “High-speed secure key distribution over an optical network based on computational correlation imaging,” Opt. Lett. 38, 2144–2146 (2013).

[20] W. Gong and S. Han, “Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints,” Phys. Lett. A 376, 1519–1522 (2012).

[21] W. Gong and S. Han, “High-resolution far-field ghost imaging via sparsity constraint,” Sci. Rep. 5, 9280 (2015).

[22] C. Zhang, S. Guo, J. Cao, J. Guan, and F. Gao, “Object reconstitution using pseudo-inverse for ghost imaging,” Opt. Express 22, 30063–30073 (2014).

[23] S. Chountasis, V. N. Katsikis, and D. Pappas, “Digital image reconstruction in the spectral domain utilizing the Moore- Penrose inverse,” Math. Prob. Eng. 2010, 750352 (2010).

[24] R. Barankov and J. Mertz, “High-throughput imaging of selfluminous objects through a single optical fibre,” Nat. Commun. 5, 5581 (2014).

[25] S. M. Kolenderska, O. Katz, M. Fink, and S. Gigan, “Scanning-free imaging through a single fiber by random spatio-spectral encoding,” Opt. Lett. 40, 534–537 (2015).

Wenlin Gong. High-resolution pseudo-inverse ghost imaging[J]. Photonics Research, 2015, 3(5): 05000234.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!