红外与激光工程, 2018, 47 (12): 1202001, 网络出版: 2019-01-10   

超导纳米线单光子探测现状与展望

Status and prospect of superconducting nanowire single photon detection
尤立星 1,2,3,*
作者单位
1 中国科学院上海微系统与信息技术研究所 信息功能材料国家重点实验室, 上海 200050
2 中国科学院超导电子学卓越创新中心, 上海 200050
3 浙江赋同科技有限公司, 浙江 嘉善 314100
摘要
超导纳米线单光子探测器(SNSPD)是一种量子极限灵敏度的光探测器。它的基本原理是利用光子能量实现超导纳米线库珀对的拆对, 从而在超导纳米线局域发生超导-非超导相变。和传统半导体单光子探测器相比, 具有探测效率高、暗计数低、时间抖动小、死时间短、宽谱响应以及自由运行等优势。高性能SNSPD已经在量子信息、激光通信、激光雷达等领域得到了广泛应用。文中概述了过去几年间国内外在SNSPD研发、应用成果及产业化等方面的进展, 并对SNSPD未来的技术发展和应用进行了展望。
Abstract
Superconducting nanowire single photon detector (SNSPD) is an optical detector with quantum-limit sensitivity. The detection mechanism is based on the Cooper-pair breaking by the photon energy, which results in a phase transition from superconducting state to non-superconducting state. SNSPDs surpass the semiconducting counterparts with high detection efficiency, low dark count rate, small timing jitter, short dead time, broad spectrum sensitivity as well as free-running etc. SNSPDs with high performance have been applied in various fields, such as, quantum information, laser communication, light detection and ranging. The progress of SNSPD research and development, application as well as commercialization at home and abroad in the past few years was summarized. An outlook of SNSPDs′ R&D as well as applications was also provided.
参考文献

[1] Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93% system efficiency[J]. Nature Photonics, 2013, 7(3): 210-214.

[2] Zhang W, You L, Li H, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1 550 nm wavelength operational at compact cryocooler temperature[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(12): 120314.

[3] Zhang W J, Yang X Y, Li H, et al. Fiber-coupled superconducting nanowire single-photon detectors integrated with a bandpass filter on the fiber end-face[J]. Superconductor Science and Technology, 2018, 31(3): 035012.

[4] Yang X Y, Li H, Zhang W J, et al. Superconducting nanowire single photon detector with on-chip bandpass filter[J]. Optics Express, 2014, 22(13): 16267-16272.

[5] Konstantin S, Yury V, Alexander D, et al. Dependence of dark count rates in superconducting single photon detectors on the filtering effect of standard single mode optical fibers[J]. Applied Physics Express, 2015, 8(2): 022501.

[6] Esmaeil Zadeh I, Los J W N, Gourgues R B M, et al. Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution[J]. APL Photonics, 2017, 2(11): 111301.

[7] Korzh B, Zhao Q, Frasca S, et al. Demonstrating sub-3 ps temporal resolution in a superconducting nanowire single-photon detector[J]. arXiv Preprint arXiv, 2018, 1804: 06839.

[8] Inderbitzin K, Engel A, Schilling A, et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays[J]. Applied Physics Letters, 2012, 101(16): 162601.

[9] Marsili F, Bellei F, Najafi F, et al. Efficient single photon detection from 500 nm to 5 μm wavelength[J]. Nano Letters, 2012, 12(9): 4799-4804.

[10] Wang Y, Li H, You L, et al. Broadband near-infrared superconducting nanowire single-photon detector with efficiency over 50%[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 2200904.

[11] Chen L, Schwarzer D, Lau J A, et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution[J]. Optics Express, 2018, 26(12): 14859-14868.

[12] Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19): 190501.

[13] Tang Y L, Yin H L, Zhao Q, et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network[J]. Physical Review X, 2016, 6(1): 011024.

[14] Tang Y L, Yin H L, Chen S J, et al. Measurement-device-independent quantum key distribution over 200 km[J]. Physical Review Letters, 2014, 113(19): 190501.

[15] Abellán C, Acín A, Alarcón A, et al. Challenging local realism with human choices[J]. Nature, 2018, 557(7704): 212-216.

[16] Sun Q C, Mao Y L, Chen S J, et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nat Photon, 2016, 10(10): 671-675.

[17] Liu Y, Yuan X, Li M H, et al. High-speed device-independent quantum random number generation without a detection loophole[J]. Physical Review Letters, 2018, 120(1): 010503.

[18] Guan J Y, Xu F, Yin H L, et al. Observation of quantum fingerprinting beating the classical limit[J]. Physical Review Letters, 2016, 116(24): 240502.

[19] Wang H, Li W, Jiang X, et al. Toward scalable boson sampling with photon loss[J]. Physical Review Letters, 2018, 120(23): 230502.

[20] He Y, Ding X, Su Z E, et al. Time-bin-encoded boson sampling with a single-photon device[J]. Physical Review Letters, 2017, 118(19): 190501.

[21] Cornwell D M. NASA′s optical communications program for 2015 and beyond[C]//SPIE, 2015, 9354: 93540E.

[22] Grein M E, Kerman A J, Dauler E A, et al. An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires[C]// SPIE, 2015, 9492: 949208.

[23] Li H, Chen S, You L, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4): 3535-3542.

[24] Xue L, Li Z, Zhang L, et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1 064 nm wavelength[J]. Optics Letters, 2016, 41(16): 3848-3851.

[25] Zhu J, Chen Y, Zhang L, et al. Demonstration of measuring sea fog with an SNSPD-based lidar system[J]. Scientific Reports, 2017, 7(1): 15113.

[26] Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(18): 3541-3544.

[27] 赋同科技. SNSPD系统[EB/OL]. [2018-10-21]. http: //www.sconphoton.com/.

尤立星. 超导纳米线单光子探测现状与展望[J]. 红外与激光工程, 2018, 47(12): 1202001. You Lixing. Status and prospect of superconducting nanowire single photon detection[J]. Infrared and Laser Engineering, 2018, 47(12): 1202001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!