激光与光电子学进展, 2020, 57 (18): 181504, 网络出版: 2020-09-02   

基于残差结构的对抗式网络图像生成方法 下载: 1078次

Image Generation Method for Adversarial Network Based on Residual Structure
颜贝 1,2,*张礼 1,2张建林 1,2徐智勇 1,2
作者单位
1 中国科学院光电技术研究所, 四川 成都 610209
2 中国科学院大学, 北京 100049
引用该论文

颜贝, 张礼, 张建林, 徐智勇. 基于残差结构的对抗式网络图像生成方法[J]. 激光与光电子学进展, 2020, 57(18): 181504.

Bei Yan, Li Zhang, Jianlin Zhang, Zhiyong Xu. Image Generation Method for Adversarial Network Based on Residual Structure[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181504.

参考文献

[1] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

[2] Salamon J, Bello J P. Deep convolutional neural networks and data augmentation for environmental sound classification[J]. IEEE Signal Processing Letters, 2017, 24(3): 279-283.

[3] Wang K F, Zuo W M, Tan Y, et al. Generative adversarial networks: from generating data to creating intelligence[J]. Acta Automatica Sinica, 2018, 44(5): 769-774.

[4] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

[5] Goodfellow IJ, Pouget-AbadieJ, MirzaM, et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, December 8-13, 2014, Montreal, Quebec. New York: Curran Associates, 2014, 2: 2672- 2680.

[6] 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012: 13- 15.

    LiH. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012: 13- 15.

[7] Zhu JY, ParkT, IsolaP, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice. New York: IEEE, 2017: 2223- 2232.

[8] ChenX, DuanY, HouthooftR, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems, December 5-10, 2016, Barcelona, Spain. New York: Curran Associates, 2016: 2180- 2188.

[9] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958.

[10] GulrajaniI, AhmedF, ArjovskyM, et al. ( 2017-12-25)[2020-01-01]. https:∥arxiv.org/abs/1704. 00028.

[11] RadfordA, MetzL, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. ( 2016-01-07)[2020-01-01]. https:∥arxiv.org/abs/1511. 06434.

[12] GirshickR. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 1440- 1448.

[13] ArjovskyM, ChintalaS, BottouL. Wasserstein generative adversarial networks[C]∥Proceedings of the 34th International Conference on Machine Learning, August 6-11, 2017, Sydney, NSW, Australia. New York: Curran Associates, 2017, 70: 214- 223.

[14] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3): 321-332.

    Wang K F, Gou C, Duan Y J, et al. Generative adversarial networks: the state of the art and beyond[J]. Acta Automatica Sinica, 2017, 43(3): 321-332.

[15] LongJ, ShelhamerE, DarrellT. Fully convolutional networks for semantic segmentation[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 3431- 3440.

[16] MiyatoT, KataokaT, KoyamaM, et al. ( 2018-02-16)[2020-01-01]. https:∥arxiv.org/abs/1802. 05957.

[17] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 770- 778.

[18] CheT, Li YR, Jacob AP, et al. ( 2017-03-02)[2020-01-01]. https:∥arxiv.org/abs/1612. 02136.

[19] He KM, Zhang XY, Ren SQ, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]∥2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile. New York: IEEE, 2015: 1026- 1034.

[20] YoshidaY, Miyato T. Spectral norm regularization for improving the generalizability of deep learning[EB/OL]. ( 2017-05-31)[2020-01-01]. https:∥arxiv.org/abs/1705. 10941.

[21] SalimansT, GoodfellowI, ZarembaW, et al. ( 2016-01-10)[2020-01-01]. https:∥arxiv.org/abs/1606.03498v1.

颜贝, 张礼, 张建林, 徐智勇. 基于残差结构的对抗式网络图像生成方法[J]. 激光与光电子学进展, 2020, 57(18): 181504. Bei Yan, Li Zhang, Jianlin Zhang, Zhiyong Xu. Image Generation Method for Adversarial Network Based on Residual Structure[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181504.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!