人工晶体学报, 2020, 49 (10): 1831, 网络出版: 2021-01-09  

有序氮掺杂介孔碳的水热自组装合成及其CO2吸附性能研究

Hydrothermal Self-Assembly Synthesis and CO2 Adsorption Property of Ordered Nitrogen-Doped Mesoporous Carbon
作者单位
1 华北电力大学环境科学与工程学院,河北省燃煤电站烟气多污染物协同控制重点实验室,保定 071003
2 新布朗斯维克大学化工系,弗雷德里克顿 E3B 5A3,加拿大
摘要
以Pluronic F127为软模板,三聚氰胺和尿素为氮源,通过无需预聚合的一步水热协同自组装法制备了有序氮掺杂介孔碳CO2吸附剂。采用N2吸附/脱附、X射线衍射仪(XRD)、透射电子显微镜(TEM)、傅里叶红外光谱仪(FT-IR)以及X射线光电子能谱仪(XPS)等多种表征手段考察了吸附剂的结构及表面特性。测定了不同温度下CO2和N2在有序氮掺杂介孔碳上的吸附等温线,应用多种吸附等温模型(Langmuir、Freundlich、Temkin、Dual-site Langmuir(DSL)模型)进行了拟合分析,并结合IAST模型预测了吸附剂在模拟烟气中的CO2/N2吸附选择性。结果表明,有序氮掺杂介孔碳具有较大的比表面积(可达498.6 m2/g)、高度有序的介观结构(P6mm空间群)以及较高的氮含量,其中氮元素以多种形式均匀掺杂在碳骨架中。研究发现,有序氮掺杂介孔碳对CO2和N2的吸附高度符合DSL吸附等温模型。此外,氮含量更高的NOMC-M具有更大的CO2吸附量(0 ℃,3.55 mmol/g;25 ℃,2.67 mmol/g)和CO2/N2吸附选择性(>40),且在连续CO2吸附/脱附循环测试后仍可保持良好的再生稳定性。
Abstract
Ordered nitrogen-doped mesoporous carbon CO2 adsorbents were synthesized by a simple one-step hydrothermal self-assembly method using F127 as a soft template, melamine and urea as the nitrogen source without additional pre-polymerization steps. Characterization methods including N2 adsorption/desorption, XRD, TEM, FT-IR and XPS were taken to study the structure and surface properties of the adsorbents. Besides, the adsorption isotherms of CO2 and N2 on the ordered nitrogen-doped mesoporous carbon at different temperatures were determined, and the results were fitted and analyzed by various adsorption isotherm models (Langmuir, Freundlich, Temkin, Dual-site Langmuir (DSL) models), further combined with the IAST model, the CO2/N2 adsorption selectivity of adsorbents in simulated flue gas was predicted. The results indicate that the ordered nitrogen-doped mesoporous carbon exhibit large specific surface area (up to 498.6 m2/g), highly ordered mesostructure (P6mm space group) and high nitrogen content, and the nitrogen is uniformly doped in the carbon framework in various forms. It was found that the adsorption isotherms of CO2 and N2 on ordered nitrogen-doped mesoporous carbon were highly consistent with the DSL model. Moreover, NOMC-M with higher nitrogen content exhibit higher CO2 adsorption capacity (0 ℃, 3.55 mmol/g; 25 ℃, 2.67 mmol/g) and CO2/N2 adsorption selectivity(>40), and can still maintain good regeneration stability after continuous CO2 adsorption/desorption cycle test.
参考文献

[1] 王燕霞,胡修德,郝 健,等.TEPA负载复合氧化活性炭吸附烟气中的CO2性能[J].化工学报,2020,71(5):2333-2343.

[2] Liu Z, Du Z, Xing W, et al. Facial synthesis of N-doped microporous carbon derived from urea furfural resin with high CO2 capture capacity[J]. Materials Letters, 2014, 117: 273-275.

[3] Pevida C, Drage T C, Snape C E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture[J]. Carbon, 2008, 46(11): 1464-1474.

[4] Wang J, Krishna R, Yang T, et al. Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons[J]. Journal of Materials Chemistry A, 2016, 4(36): 13957-13966.

[5] Yang M, Guo L, Hu G, et al. Highly cost-effective nitrogen-doped porous coconut shell-based CO2 sorbent synthesized by combining ammoxidation with KOH activation[J]. Environmental Science & Technology, 2015, 49(11): 7063-7070.

[6] Zhang P, Zhong Y, Ding J, et al. A new choice of polymer precursor for solvent-free method: preparation of N-enriched porous carbons for highly selective CO2 capture[J]. Chemical Engineering Journal, 2019, 355: 963-973.

[7] Kutorglo E M, Hassouna F, Beltzung A, et al. Nitrogen-rich hierarchically porous polyaniline-based adsorbents for carbon dioxide (CO2) capture[J]. Chemical Engineering Journal, 2019, 360: 1199-1212.

[8] 鲁晓龙,苏 伟,孙 艳.氮掺杂多孔碳材料吸附CO2的研究进展[J].现代化工,2019,39(2):51-54+56.

[9] Phan T N, Gong M K, Thangavel R, et al. Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): role of mesopores and mesopore structures[J]. Journal of Alloys and Compounds, 2019, 780: 90-97.

[10] Sui L, Wang Y, Ji W, et al. N-doped ordered mesoporous carbon/graphene composites with supercapacitor performances fabricated by evaporation induced self-assembly[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29820-29829.

[11] Elaigwu S E, Greenway G M. Biomass derived mesoporous carbon monoliths via an evaporation-induced self-assembly[J]. Materials Letters, 2014, 115: 117-120.

[12] Kubo S, White R J, Yoshizawa N, et al. Ordered carbohydrate-derived porous carbons[J]. Chemistry of Materials, 2011, 23(22): 4882-4885.

[13] Liu D, Lei J H, Guo L P, et al. Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine[J]. Carbon, 2011, 49(6): 2113-2119.

[14] Lin D H, Jiang Y X, Chen S R, et al. Preparation of Pt nanoparticles supported on ordered mesoporous carbon FDU-15 for electrocatalytic oxidation of CO and methanol[J]. Electrochimica Acta, 2012, 67: 127-132.

[15] Simaioforidou A, Kostas V, Karakassides M A, et al. Surface chemical modification of macroporous and mesoporous carbon materials: effect on their textural and catalytic properties[J]. Microporous and Mesoporous Materials, 2019, 279: 334-344.

[16] Wu Y, Wang J, Muhammad Y, et al. Pyrrolic N-enriched carbon fabricated from dopamine-melamine via fast mechanochemical copolymerization for highly selective separation of CO2 from CO2/N2[J]. Chemical Engineering Journal, 2018, 349: 92-100.

[17] Wu Z, Webley P A, Zhao D. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(22): 11379-11389.

[18] Tiwari D, Goel C, Bhunia H, et al. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture[J]. Journal of Environmental Management, 2017, 197: 415-427.

[19] Ferrero G A, Fuertes A B, Sevilla M, et al. Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach[J]. Carbon, 2016, 106: 179-187.

[20] Tiwari D, Bhunia H, Bajpai P K. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies[J]. Applied Surface Science, 2018, 439: 760-771.

[21] Goel C, Tiwari D, Bhunia H, et al. Pure and binary gas adsorption equilibrium for CO2-N2 on oxygen enriched nanostructured carbon adsorbents[J]. Energy & Fuels, 2017, 31(12): 13991-13998.

[22] Myers A L, Prausnitz J M. Thermodynamics of mixed-gas adsorption[J]. AIChE Journal, 1965, 11(1): 121-127.

[23] Yue L, Rao L, Wang L, et al. Efficient CO2 adsorption on nitrogen-doped porous carbons derived from D-glucose[J]. Energy & Fuels, 2018, 32(6): 6955-6963.

宛霞, 肖惠宁, 刘洁. 有序氮掺杂介孔碳的水热自组装合成及其CO2吸附性能研究[J]. 人工晶体学报, 2020, 49(10): 1831. WAN Xia, XIAO Huining, LIU Jie. Hydrothermal Self-Assembly Synthesis and CO2 Adsorption Property of Ordered Nitrogen-Doped Mesoporous Carbon[J]. Journal of Synthetic Crystals, 2020, 49(10): 1831.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!