太赫兹科学与电子信息学报, 2016, 14 (4): 502, 网络出版: 2016-10-24  

基于自旋电子学的太赫兹波产生方法

THz wave generation methods based on spintronics
冯正 1,2,*谭为 1,2成彬彬 1,2邓贤进 1,2
作者单位
1 中国工程物理研究院电子工程研究所,四川 绵阳 621999
2 中国工程物理研究院微系统与太赫兹研究中心,四川 绵阳 621999
摘要
自旋电子学的某些物理现象,如交换型磁振子、反铁磁共振、超快自旋动力学等,其特征频率刚好处于太赫兹频段。利用相应的自旋电子学现象和原理,研究人员发现和建立了若干新型的太赫兹波产生方法,为新型太赫兹源的实现和发展提供指导方向。这些新型产生方法有: a) 自旋注入产生太赫兹波; b) 基于反铁磁共振的太赫兹波产生; c) 基于超快自旋动力学的太赫兹波产生。理论及实验结果表明,基于自旋电子学的太赫兹产生方法具有较大的潜力,有望推动太赫兹技术的发展。
Abstract
Spintronics is an exciting discipline that involves the study of active control and manipulation of spin degrees of freedom in solid-state systems, the study of spin transport and invention of novel spin-based devices. Some physical phenomena in spintronics, such as exchange magnon, antiferromagnetic resonance, ultrafast spin dynamics, present characteristic frequencies in the THz range. Utilizing the physical principles, the researchers have found and developed several novel THz wave generation methods which give instructions to develop novel THz sources. The methods include: a) THz wave generation based on spin injection; b) THz wave generation based on antiferromagnetic resonance; c) THz wave generation based on ultrafast spin dynamics. THz wave generation methods based on spintronics have great potential which may promote the progress of THz technology.
参考文献

[1] 许景周,张希成.太赫兹科学技术和应用[M].北京:北京大学出版社, 2007. (XU Jingzhou,ZHANG Xicheng. Terahertz Science and Technology and Its Applications[M]. Beijing:Beijing University Press, 2007.)

[2] BADER S D,PARKIN S S P. Spintronics[J]. Annual Review of Condensed Matter Physics, 2010,1(1):71-88.

[3] .uti. I,FABIAN J,SARMA S D. Spintronics:Fundamentals and applications[J]. Reviews of Modern Physics, 2004,76(2):323-410.

[4] LENK B,ULRICHS H,GARBS F,et al. The building blocks of magnonics[J]. Physics Reports, 2011,507(4/5):107-136.

[5] TANKHILEVICH B G,KORENBLIT Y. Novel spintronic device:terahertz magnon-photon laser[J]. Journal of Physics:Conference Series, 2011,263(1):012004.

[6] NISHITANI J,KOZUKI K,NAGASHIMA T,et al. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses[J]. Applied Physics Letters, 2010,96(22):221906.

[7] CHENG R,XIAO J,NIU Q,et al. Spin pumping and spin-transfer torques in antiferromagnets[J]. Physical Review Letters, 2014,113(5):057601.

[8] NISHITANI J,NAGASHIMA T,HANGYO M. Terahertz radiation from antiferromagnetic MnO excited by optical laser pulses[J]. Applied Physics Letters, 2013,103(8):081907.

[9] GOMONAY H V,LOKTEV V. Spin transfer and current-induced switching in antiferromagnets[J]. Physical Review B, 2010, 81(14):144427.

[10] GOMONAY H,LOKTEV V. Spin torque antiferromagnetic nanooscillator in the presence of magnetic noise[J]. Condensed Matter Physics, 2012,15(4):43703.

[11] KAMPFRATH T,BATTIATO M,MALDONADO P,et al. Terahertz spin current pulses controlled by magnetic heterostructures[J]. Nature Nanotechnology, 2013,8(4):256-260.

[12] KORENBLIT Y,TANKHILEVICH B G. US Patent 7430074. Generation of terahertz waves[S]. 2008.

[13] KORENBLIT Y,TANKHILEVICH B G. US Patent 7440178. Tunable generation of terahertz radiation[S]. 2008.

[14] KORENBLIT Y,TANKHILEVICH B G. US Patent 7471449. Method and apparatus for generating Terahertz radiation with magnon gain medium and magnon mirror[S]. 2008.

[15] KORENBLIT Y,TANKHILEVICH B G. US Patent 7508578. Magnon laser[S]. 2009.

[16] KORENBLIT Y,TANKHILEVICH B G. US Patent 7706056. Modulation of terahertz radiation[S]. 2010.

[17] GULAYEV Y V,ZILBERMAN P E,CHIGAREV S G,et al. Spin-polarized current in a rod-to-film structure[J]. Journal of Communications Technology and Electronics, 2010,55(10):1132-1136.

[18] GULAYEV Y V,ZILBERMAN P E,MALIKOV I V,et al. Current induced spin injection and terahertz radiation in ferromagnetic junctions[J]. Doklady Physics, 2011,56(5):265-267.

[19] GULAYEV Y V,ZILBERMAN P E,MALIKOV I V,et al. Spin injection terahertz radiation in magnetic junctions[J]. JETP Letters, 2011,93:259-262.

[20] GULAYEV Y V,CHIGAREV S G,MALIKOV I V,et al. Efficiency of the terahertz spin-injection emitter[J]. Journal of Communications Technology and Electronics, 2011,56(11):1363-1366.

[21] ROSS M P. Spin dynamics in an antiferromagnet[D]. [S.l.]:Technische Universit.t München, 2013.

[22] SLONCZEWSKI J C. Current-driven excitation of magnetic multilayers[J]. Journal of Magnetism and Magnetic Materials, 1996, 159(1/2):L1-L7.

[23] BERGER L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Physical Review B, 1996,54(13):9353-9360.

[24] RALPH D C,STILES M D. Spin transfer torques[J]. Journal of Magnetism and Magnetic Materials, 2008,320(7):1190-1216.

[25] WEI W,SHARMA A,NUNEZ A S,et al. Changing exchange bias in spin valves with an electric current[J]. Physical Review Letters, 2007,98(11):116603.

[26] URAZHDIN S,ANTHONY N. Effect of polarized current on the magnetic state of an antiferromagnet[J]. Physical Review Letters, 2007,99(4):046602.

[27] KISELEV S I,SANKEY J C,KRIVOROTOV I N,et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current[J]. Nature, 2003,425(6956):380-383.

[28] SAITOH E,UEDA M,MIYAJIMA H,et al. Conversion of spin current into charge current at room temperature:Inverse spin-Hall effect[J]. Applied Physics Letters, 2006,88(18):182509.

[29] FENG Zheng,HU Jian,SUN Liang,et al. Spin Hall angle quantification from spin pumping and microwave photoresistance[J]. Physical Review B, 2012,85(21):214423.

冯正, 谭为, 成彬彬, 邓贤进. 基于自旋电子学的太赫兹波产生方法[J]. 太赫兹科学与电子信息学报, 2016, 14(4): 502. FENG Zheng, TAN Wei, CHENG Binbin, DENG Xianjin. THz wave generation methods based on spintronics[J]. Journal of terahertz science and electronic information technology, 2016, 14(4): 502.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!