中国激光, 2020, 47 (5): 0500016, 网络出版: 2020-05-12   

部分相干照明下的相位恢复方法及应用研究进展 下载: 2613次特邀综述

Research Progress on Methods and Applications for Phase Reconstruction Under Partially Coherent Illumination
卢兴园 1赵承良 1,*蔡阳健 1,2,3,**
作者单位
1 苏州大学物理科学与技术学院, 江苏 苏州 215006
2 山东师范大学物理与电子学院, 山东 济南 250014
3 山东省光场调控工程技术中心, 山东省光学与光子器件技术重点实验室, 山东 济南 250014
引用该论文

卢兴园, 赵承良, 蔡阳健. 部分相干照明下的相位恢复方法及应用研究进展[J]. 中国激光, 2020, 47(5): 0500016.

Xingyuan Lu, Chengliang Zhao, Yangjian Cai. Research Progress on Methods and Applications for Phase Reconstruction Under Partially Coherent Illumination[J]. Chinese Journal of Lasers, 2020, 47(5): 0500016.

参考文献

[1] Miao J, Ishikawa T, Robinson I K, et al. Beyond crystallography: diffractive imaging using coherent X-ray light sources[J]. Science, 2015, 348(6234): 530-535.

[2] 潘安, 张艳, 赵天宇, 等. 基于叠层衍射成像术的量化相位显微成像[J]. 激光与光电子学进展, 2017, 54(4): 040001.

    Pan A, Zhang Y, Zhao T Y, et al. Quantitative phase microscopy imaging based on ptychography[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040001.

[3] 潘兴臣, 刘诚, 陶华, 等. Ptychography相位成像及其关键技术进展[J]. 光学学报, 2020, 40(1): 0111010.

    Pan X C, Liu C, Tao H, et al. Phase imaging based on ptychography and progress on related key techniques[J]. Acta Optica Sinic, 2020, 40(1): 0111010.

[4] 梁言生, 姚保利, 雷铭. 全息光镊在生物学研究中的应用[J]. 中国激光, 2020, 47(2): 0207020.

    Liang Y S, Yao B L, Lei M. Applications of holographic optical tweezers in biological research[J]. Chinese Journal of Lasers, 2020, 47(2): 0207020.

[5] MirM, BhaduriB, WangR, et al. Quantitative phase imaging[M] //Progress in Optics.[S.n.]: Elsevier, 2012: 133- 217.

[6] Tahara T, Quan X Y, Otani R, et al. Digital holography and its multidimensional imaging applications: a review[J]. Microscopy, 2018, 67(2): 55-67.

[7] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578-589.

[8] 蔡双双, 郑龙飞, 曾碧新, 等. 基于强度传输方程和微分干涉相差显微镜的定量相位成像及其在乳腺癌诊断中的应用[J]. 中国激光, 2018, 45(3): 0307015.

    Cai S S, Zheng L F, Zeng B X, et al. Quantitative phase imaging based on transport-of-intensity equation and differential interference contrast microscope and its application in breast cancer diagnosis[J]. Chinese Journal of Lasers, 2018, 45(3): 0307015.

[9] 左超, 陈钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43(6): 0609002.

    Zuo C, Chen Q, Sun J S, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 2016, 43(6): 0609002.

[10] Gabor D. Holography, 1948—1971[J]. Science, 1972, 177(4046): 299-313.

[11] Gerchberg R W. Phase determination for image and diffraction plane pictures in the electron microscope[J]. Optik, 1971, 34: 275.

[12] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[13] Fienup J R. Phase retrieval algorithms: a comparison[J]. Applied Optics, 1982, 21(15): 2758-2759.

[14] Rodenburg J M. Faulkner H M L. A phase retrieval algorithm for shifting illumination[J]. Applied Physics Letters, 2004, 85(20): 4795-4797.

[15] Faulkner H M L, Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

[16] Miao J W, Charalambous P, Kirz J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(6742): 342-344.

[17] Dubois F. Requena M L N, Minetti C, et al. Partial spatial coherence effects in digital holographic microscopy with a laser source[J]. Applied Optics, 2004, 43(5): 1131-1139.

[18] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction[J]. Applied Optics, 1994, 33(2): 179-181.

[19] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 1997, 22(16): 1268-1270.

[20] Popescu G, Deflores L P, Vaughan J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 2503-2505.

[21] Teague M R. Deterministic phase retrieval: a Green's function solution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[22] Streibl N. Phase imaging by the transport equation of intensity[J]. Optics Communications, 1984, 49(1): 6-10.

[23] Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light[J]. Physical Review Letters, 1998, 80(12): 2586.

[24] Gureyev T E, Nesterets Y I, Paganin D M, et al. Linear algorithms for phase retrieval in the Fresnel region: partially coherent illumination[J]. Optics Communications, 2006, 259(2): 569-580.

[25] Petruccelli J C, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination[J]. Optics Express, 2013, 21(12): 14430-14441.

[26] Zuo C, Chen Q, Tian L, et al. Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective[J]. Optics and Lasers in Engineering, 2015, 71: 20-32.

[27] Jiang H D, Xu R, Chen C C, et al. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution[J]. Physical Review Letters, 2013, 110(20): 205501.

[28] Shapiro D A, Yu Y S, Tyliszczak T, et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy[J]. Nature Photonics, 2014, 8(10): 765-769.

[29] Clark J N, Beitra L, Xiong G, et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals[J]. Science, 2013, 341(6141): 56-59.

[30] Seaberg M D, Zhang B S, Gardner D F, et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography[J]. Optica, 2014, 1(1): 39-44.

[31] Jiang H, Song C, Chen C C, et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11234-11239.

[32] Nishino Y, Takahashi Y, Imamoto N, et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction[J]. Physical Review Letters, 2009, 102: 018101.

[33] Ekeberg T, Svenda M, Abergel C, et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray free-electron laser[J]. Physical Review Letters, 2015, 114(9): 098102.

[34] Chapman H N, Fromme P, Barty A, et al. Femtosecond X-ray protein nanocrystallography[J]. Nature, 2011, 470(7332): 73.

[35] Javidi B, Nomura T. Securing information by use of digital holography[J]. Optics Letters, 2000, 25(1): 28-30.

[36] Whitehead L W, Williams G J, Quiney H M, et al. Diffractive imaging using partially coherent X rays[J]. Physical Review Letters, 2009, 103(24): 243902.

[37] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 2007, 32(8): 912-914.

[38] Flewett S, Quiney H M, Tran C Q, et al. Extracting coherent modes from partially coherent wavefields[J]. Optics Letters, 2009, 34(14): 2198-2200.

[39] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

[40] Clark J N, Huang X J, Harder R J, et al. Continuous scanning mode for ptychography[J]. Optics Letters, 2014, 39(20): 6066-6069.

[41] Clark J N, Huang X J, Harder R J, et al. Dynamic imaging using ptychography[J]. Physical Review Letters, 2014, 112(11): 113901.

[42] Chen B, Abbey B, Dilanian R, et al. Diffraction imaging: the limits of partial coherence[J]. Physical Review B, 2012, 86(23): 235401.

[43] Li P, Edo T, Batey D, et al. Breaking ambiguities in mixed state ptychography[J]. Optics Express, 2016, 24(8): 9038-9052.

[44] Burdet N, Shi X W, Parks D, et al. Evaluation of partial coherence correction in X-ray ptychography[J]. Optics Express, 2015, 23(5): 5452-5467.

[45] Lurie M. Fourier-transform holograms with partially coherent light: holographic measurement of spatial coherence[J]. Journal of the Optical Society of America, 1968, 58(5): 614-619.

[46] Parks D H, Shi X, Kevan S D. Partially coherent X-ray diffractive imaging of complex objects[J]. Physical Review A, 2014, 89(6): 063824.

[47] Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized eikonal of partially coherent beams and its use in quantitative imaging[J]. Physical Review Letters, 2004, 93(6): 068103.

[48] Shao Y F, Lu X Y, Konijnenberg S, et al. Spatial coherence measurement and partially coherent diffractive imaging using self-referencing holography[J]. Optics Express, 2018, 26(4): 4479-4490.

[49] Lu X Y, Shao Y F, Zhao C L, et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask[J]. Advanced Photonics, 2019, 1(1): 016005.

[50] Konijnenberg A P, Lu X Y, Liu L X, et al. Non-iterative method for phase retrieval and coherence characterization by focus variation using a fixed star-shaped mask[J]. Optics Express, 2018, 26(7): 9332-9343.

[51] Yang Y J, Zhu X L, Zeng J, et al. Anomalous Bessel vortex beam: modulating orbital angular momentum with propagation[J]. Nanophotonics, 2018, 7(3): 677-682.

[52] Zeng J, Liu X L, Wang F, et al. Partially coherent fractional vortex beam[J]. Optics Express, 2018, 26(21): 26830-26844.

[53] Dong M, Lu X Y, Zhao C L, et al. Measuring topological charge of partially coherent elegant Laguerre-Gaussian beam[J]. Optics Express, 2018, 26(25): 33035-33043.

[54] Peng X F, Lu X Y, Liu X L, et al. Generation and propagation of a Hermite-Gaussian correlated Schell-model LG0l beam[J]. Applied Sciences, 2019, 9(3): 610.

[55] Lu X Y, Zhao C L, Shao Y F, et al. Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam[J]. Applied Physics Letters, 2019, 114(20): 201106.

[56] Zeng J, Lu X Y, Liu L X, et al. Simultaneous measurement of the radial and azimuthal mode indices of a higher-order partially coherent vortex beam based on phase detection[J]. Optics Letters, 2019, 44(15): 3881-3884.

[57] Gureyev T, Nugent K. Rapid quantitative phase imaging using the transport of intensity equation[J]. Optics Communications, 1997, 133(1/2/3/4/5/6): 339-346.

[58] MandelL, WolfE. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.

[59] WolfE. Introduction to the theory of coherence and polarization of light[M]. Cambridge: Cambridge University Press, 2007.

[60] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057.

[61] Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802.

[62] Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866.

[63] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533.

[64] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Optics Communications, 1978, 25(3): 293-296.

[65] Collett E, Wolf E. Is complete spatial coherence necessary for the generation of highly directional light beams?[J]. Optics Letters, 1978, 2(2): 27-29.

[66] Chen Y H, Gu J X, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 2015, 91: 013823.

[67] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations[J]. Optics Letters, 2011, 36(20): 4104-1406.

[68] Wang F, Chen Y H, Liu X L, et al. Self-reconstruction of partially coherent light beams scattered by opaque obstacles[J]. Optics Express, 2016, 24(21): 23735-23746.

[69] Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam[J]. Optics Letters, 2014, 39(9): 2549-2552.

[70] Liang C H, Mi C K, Wang F, et al. Vector optical coherence lattices generating controllable far-field beam profiles[J]. Optics Express, 2017, 25(9): 9872-9885.

[71] Liang C H, Zhu X L, Mi C K, et al. High-quality partially coherent Bessel beam array generation[J]. Optics Letters, 2018, 43(13): 3188-3191.

[72] Gu Y L, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence[J]. Journal of the Optical Society of America A, 2010, 27(12): 2621-2629.

[73] Liang C H, Wu G F, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources[J]. Optics Express, 2017, 25(23): 28352-28362.

[74] 陈亚红, 蔡阳健. 激光相干性调控及应用[J]. 光学学报, 2016, 36(10): 1026002.

    Chen Y H, Cai Y J. Laser coherence modulation and its applications[J]. Acta Optica Sinica, 2016, 36(10): 1026002.

[75] 曾军, 陈亚红, 刘显龙, 等. 部分相干涡旋光束研究进展[J]. 光学学报, 2019, 39(1): 0126004.

    Zeng J, Chen Y H, Liu X L, et al. Research progress on partially coherent vortex beams[J]. Acta Optica Sinica, 2019, 39(1): 0126004.

[76] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

[77] Zhao C L, Cai Y J, Lu X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765.

[78] Ng J, Lin Z F, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 2010, 104(10): 103601.

[79] Coutts D W. Double-pass copper vapor laser master-oscillator power-amplifier systems: generation of flat-top focused beams for fiber coupling and percussion drilling[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1217-1224.

[80] Nishi N, Jitsuno T, Tsubakimoto K, et al. Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target[J]. Optical Review, 2000, 7(3): 216-220.

[81] Wang F, Liu X L, Yuan Y S, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816.

[82] Ma L Y, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 2015, 23(2): 1848-1856.

[83] Liu X L, Wang F, Liu L, et al. Complex degree of coherence measurement for classical statistical fields[J]. Optics Letters, 2017, 42(1): 77-80.

[84] Saastamoinen K, Tervo J, Turunen J, et al. Spatial coherence measurement of polychromatic light with modified Young's interferometer[J]. Optics Express, 2013, 21(4): 4061-4071.

[85] Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics[J]. Optica, 2015, 2(2): 95-103.

[86] Wood J K, Sharma K A, Cho S, et al. Using shadows to measure spatial coherence[J]. Optics Letters, 2014, 39(16): 4927-4930.

[87] Raymer M G, Beck M. McAlister D. Complex wave-field reconstruction using phase-space tomography[J]. Physical Review Letters, 1994, 72(8): 1137.

[88] Arimoto H, Ohtsuka Y. Measurements of the complex degree of spectral coherence by use of a wave-front-folded interferometer[J]. Optics Letters, 1997, 22(13): 958.

[89] Bhattacharjee A, Aarav S, Jha A K. Two-shot measurement of spatial coherence[J]. Applied Physics Letters, 2018, 113(5): 051102.

[90] Koivurova M, Partanen H, Lahyani J, et al. Scanning wavefront folding interferometers[J]. Optics Express, 2019, 27(5): 7738.

[91] Sandberg R L, Raymondson D A. La-o-vorakiat C, et al. Tabletop soft-x-ray Fourier transform holography with 50 nm resolution[J]. Optics Letters, 2009, 34(11): 1618-1620.

卢兴园, 赵承良, 蔡阳健. 部分相干照明下的相位恢复方法及应用研究进展[J]. 中国激光, 2020, 47(5): 0500016. Xingyuan Lu, Chengliang Zhao, Yangjian Cai. Research Progress on Methods and Applications for Phase Reconstruction Under Partially Coherent Illumination[J]. Chinese Journal of Lasers, 2020, 47(5): 0500016.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!