红外与毫米波学报, 2017, 36 (3): 349, 网络出版: 2017-07-05  

布拉格反射波导光子晶体宽光谱量子阱激光器

Quantum well lasers with broad spectra based on Bragg reflection waveguide
作者单位
1 长春理工大学电子信息工程学院,吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
3 长春机械科学研究院有限公司, 吉林 长春 130103
摘要
半导体宽谱激光在传感、光谱学等领域有着重要的应用.传统半导体宽谱激光器主要采用宽增益材料和全反射波导, 采用简单量子阱结构制备宽谱激光器一直是个难题.作者首次证明了一种基于布拉格反射波导一维光子晶体的新型量子阱宽谱激光器, 其结构主要包括InGaAs/GaAs量子阱和上下布拉格反射镜, 通过偏离解理实现激光输出.研究发现在偏离角7°时, 器件展现宽谱超辐射发光二极管特性, 4.4°偏离角时实现了宽光谱激光输出, 光谱宽度达到33.7 nm, 连续输出功率36 mW.本研究为探索新型量子阱宽谱激光器提出了一种新的技术途径.
Abstract
Semiconductor lasers with broad spectra are crucial for sensing, spectroscopy and biomedical imaging, etc. Currently, the broadband semiconductor lasers are majority based on the broad gain material and total interface reflection (TIR) waveguide. It is still a challenge to realize the broadband semiconductor lasers based on the simple and mature quantum well (QW) material. In this paper, a new type broadband QW laser using Bragg reflection waveguide with a deviation angle from cleaving crystal faces was demonstrated. The device consists of the InGaAs/GaAs QWs, top and bottom Bragg reflectors. It was found that it shows the characteristics of superluminescent diode (SLD) with a spectrum width of 135 nm for the device with a deviation angle of 7°. The spectrum width of 33.7 nm was achieved with an emission power of 36 mW from one facet for a deviation angle of 4.4°. This work supplies a new possible approach for the development of high performance QW broadband lasers.
参考文献

[1] Gmachl C, Sivco D L, Colombelli R, et al.Ultra-broadband semiconductor laser [J]. Nature, 2002, 415, 883-887.

[2] Somers A, Kaiser W, Reithmaier J P, et al. InP-based quantum dash lasers for broadband optical amplification and gas sensing applications [C], International Conference on Indium Phosphide and Related Materials, 2005: 56-59.

[3] Ooi B S, Djie H S, Wang Y, et al. Quantum dashes on InP substrate for broadband emitter applications [J]. IEEE J. Sel. Top. Quantum Electron. 2008, 14(4):1230-1238 .

[4] Kovsh A, Krestnikov I, Livshits D et al. Quantum dot laser with 75 nm broad spectrum of emission [J]. Opt. Lett., 2007, 32(7): 793-795.

[5] Gao F, Luo S,Ji H M, et al. Flat-topped ultrabroad stimulated emission from chirped InAs/InP quantum dot laser with spectral width of 92 nm[J]. Appl. Phys. Lett., 2016, 108:201107.

[6] Fedorova K A, Cataluna M A, Krestbikov I, et al. Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers[J]. Opt. Express, 2010, 18(18):19438-19443.

[7] Djie H S, Tan C L, Ooi B S, et al. Ultrabroad stimulated emission from quantum-dash laser [J]. Appl. Phys. Lett., 2007, 91: 111116.

[8] Wang H L, Zhou X L, Yu H Y, et al. Ultrabroad stimulated emission from quantum well laser[J]. Appl. Phys. Lett., 2014,104: 201101.

[9] Graydon O. Broadband lasers [J]. Nat.Photonics, 2014, 8: 675.

[10] Wang H L, Yu H Y, Zhou X L, et al. High-power InGaAs/GaAs quantum-well laser with enhanced broad spectrum of stimulated emission [J]. Appl. Phys. Lett., 2014, 104: 141101.

[11] Yeh A, Yariv A. Bragg reflection waveguides[J]. Opt. Comm., 1976, 19(3): 427-430.

[12] Li J, Chiang K S. Guided modes of one-dimensional photonic bandgap waveguides [J]. J. Opt. Soc. America B, 2007, 24(8): 1942-1950.

[13] Liang W, Xu Y, Choi J M, et al. Engineering transverse Bragg resonance waveguides for large modal volume lasers [J]. Opt. Lett., 2003, 28(21): 2079-2081.

[14] Zhu L, Scherer A, Yariv A. Modal gain analysis of transverse Bragg resonance waveguide lasers with and without transverse defects [J]. IEEE J. Quantum Electron., 2007, 43(10): 934-940.

[15] Novikov I I, Gordeev N Y, Shernyakov Y M, et al. High-power single mode (>1 W) continuous wave operation of longitudinal photonic band crystal lasers with a narrow vertical beam divergence [J]. Appl.Phys.Lett., 2008, 92(10):103515-103515-3.

[16] Wang L J, Tong C Z, Tian S C, et al. High power, ultra-low divergence edge-emitting diode laser with circular beam [J]. IEEE J. Select. Topics Quantum Electron., 2015, 21(6):1501609.

[17] Wang L J, Tong C Z, Zeng Y G, et al. Bragg re ection waveguide twin-beam lasers[J]. Laser Phys.,2013, 23:105802.

[18] Abolghasem P, Han J, Bijlani B, et al. Continuous-wave second harmonic generation in bragg reflection waveguides [J]. Opt. Express, 2009, 17(11): 9460-9467.

[19] Liang J. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure[J]. J. Appl. Phys., 2014, 115: 184504.

[20] Hu W D. Recent progress of subwavelength photon trapping HgCdTe infrared detector [J], J. Infrared Millim. Waves. 2016, 35: 25-36.

[21] TONG Cun-Zhu, WANG Li-Jie, TIAN Si-Cong, et al. Study on Bragg reflection waveguide diode laser [J].Chinese Optics (佟存柱, 汪丽杰, 田思聪,等. 布拉格反射波导半导体激光器的研究.中国光学), 2015, 8(3): 480-498.

[22] WANG Li-Jie 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [汪丽杰 2013 博士学位论文, 布拉格反射波导光子晶体激光器的研究, 北京: 中国科学院大学)].

[23] LIU Yang, Zeng Yu-Ping, SONG Jun-Feng, et al. InGaAsP/InP integrated superluminescent light source with tilted structure [J]. Chinese J. Lasers (刘杨,曾毓萍,宋俊峰,等. 倾斜结构 InGaAsP/InP 集成超辐射光源.中国激光), 2001, A28(5), 412-414.

[24] SONG Yan-Rong, HUA Ling-Ling, ZHANG Peng, et al. Calculation of band structure of InGaAs/GaAs strained quantum wells [J]. J. Beijing Univ. Technol. (宋晏蓉,华玲玲,张鹏,等. InGaAs/GaAs应变量子阱能带结构的计算.北京工业大学学报), 2011, 37(4): 565-569.

李珍, 汪丽杰, 侯冠宇, 王涛, 卢泽丰, 陆寰宇, 孙宝瑞, 丁国龙, 佟存柱, 李洪祚. 布拉格反射波导光子晶体宽光谱量子阱激光器[J]. 红外与毫米波学报, 2017, 36(3): 349. LI Zhen, WANG Li-Jie, HOU Guan-Yu, WANG Tao, LU Ze-Feng, LU Huan-Yu, SUN Bao-Rui, DING Guo-Long, TONG Cun-Zhu, LI Hong-Zuo. Quantum well lasers with broad spectra based on Bragg reflection waveguide[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 349.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!