人工晶体学报, 2020, 49 (4): 631, 网络出版: 2020-06-15  

氰基修饰的g-C3N4制备及光催化产氢性能

Preparation and Photocatalytic Hydrogen Production Properties of Cyano-modified g-C3N4
作者单位
1 桂林理工大学材料科学与工程学院,桂林 541004
2 广西有色金属及特色材料加工教育部重点实验室,广西光电材料与器件重点实验室,桂林 541004
摘要
通过简单的醋酸钠与g-C3N4前驱体三聚氰胺共混直接在空气气氛下烧制成功制备出氰基修饰的g-C3N4。采用XRD、SEM、FT-IR、XPS、UV-Vis、PL和EIS对所得催化剂的物相结构、形貌和光学性能进行了表征。合成的氰基修饰的g-C3N4有着高效的光催化产氢性能,比原始g-C3N4的光催化产氢性能最高提高4.5倍(λ≥ 420 nm),归固于氰基增强了光生电子和空穴的分离能力。另外,氰基修饰的g-C3N4在循环光催化产氢过程中展现了良好的光催化稳定性。
Abstract
The cyano-modified graphitic carbon nitride (g-C3N4) was successfully synthesized by a facile thermal condensation in air atmosphere using sodium acetate and melamine as precursor. The phase structure,morphology and optical properties of the catalyst were characterized by XRD, SEM, FT-IR, XPS, UV-Vis, PL and EIS. The synthesized cyano-modified g-C3N4 has high-efficient photocatalytic hydrogen production, H2 production rate (λ≥ 420 nm) of cyano-modified g-C3N4 is 4.5 times of that on pristine g-C3N4 because the cyano groups enhance the photo-generated electrons separation ability. Besides, the cyano-modified g-C3N4 exhibits better photocatalytic stability in the repeated photocatalytic hydrogen production process.
参考文献

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.

[2] Azevedo E B, Neto F R D, Dezotti M. TiO2-photocatalyzed degradation of phenol in saline media: lumped kinetics, intermediates, and acute toxicity[J].Appl. Catal. B:Environ.,2004,54:165-175.

[3] Cheng J, Yan X, Mo Q, et al. Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance[J].Ceramics International,2017,43(1):301-307.

[4] Zeng D, Lu Z, Gao X, et al. Hierarchical flower-like ZnIn2S4anchored with well-dispersed Ni12P5 nanoparticles for high-quantum-yield photocatalytic H2 evolution under visible light[J].Catalysis Science & Technology,2019,9(15):4010-4016.

[5] Dai X, Xie M, Meng S, et al. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation[J].Applied Catalysis B-Environmental,2014,158:382-390.

[6] Fu J, Chang B, Tian Y, et al. Novel C3N4-CdS composite photocatalysts with organic-inorganic heterojunctions:in situ synthesis, exceptional activity, high stability and photocatalytic mechanism[J].Journal of Materials Chemistry A,2013,1(9):3083-3090.

[7] He X, Zhang C. Recent advances in structure design for enhancing photocatalysis[J].Journal of Materials Science,2019,54(12):8831-8851.

[8] Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability?[J].Chem. Rev.,2016,116(12):7159-329.

[9] Li X, Bi W, Zhang L, et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution[J].Advanced Materials,2016,28(12):2427-2431.

[10] Liang S, Xia Y, Zhu S, et al. Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation[J].Applied Surface Science,2015,358:304-312.

[11] Wang L, Zhou G, Tian Y, et al. Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design[J].Applied Catalysis B-Environmental,2019,244:262-271.

[12] Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J].Advanced Functional Materials,2012,22(22):4763-4770.

[13] Wang Y, Wang X, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst:from photochemistry to multipurpose catalysis to sustainable chemistry[J].Angew. Chem. Int. Ed. Engl.,2012,51(1):68-89.

[14] Tan H, Gu X, Kong P, et al. Cyano group modified carbon nitride with enhanced photoactivity for selective oxidation of benzylamine[J].Applied Catalysis B-Environmental,2019,242:67-75.

[15] 杨薛峰,马 涛,申倩倩,等.酸化法制备g-C3N4纳米片及其光催化性能研究[J].人工晶体学报,2018,47(4):703-708+714.

[16] Yuan B, Chu Z, Li G, et al. Water-soluble ribbon-like graphitic carbon nitride (g-C3N4):green synthesis, self-assembly and unique optical properties[J].Journal of Materials Chemistry C,2014,2(39):8212-8215.

[17] Lotsch B V, Doeblinger M, Sehnert J, et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer[J].Chemistry-A European Journal,2007,13(17):4969-4980.

[18] Liu G, Zhao G, Zhou W, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J].Advanced Functional Materials,2016,26(37):6822-6829.

[19] Liu X, Wang P, Zhai H, et al. Synthesis of synergetic phosphorus and cyano groups (-C equivalent to N) modified g-C3N4 for enhanced photocatalytic H2 production and CO2 reduction under visible light irradiation[J].Applied Catalysis B-Environmental,2018,232:521-530.

[20] Sano T, Sato H, Hori T, et al. Effects of polytheric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis[J].Molecular Catalysis,2019,474:1-7.

[21] Xu C Q, Li K, Zhang W D. Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine[J].Journal of Colloid and Interface Science,2017,495:27-36.

[22] Li H, Wang M, Wei Y, et al. Noble metal-free NiS2 with rich active sites loaded g-C3N4 for highly efficient photocatalytic H2 evolution under visible light irradiation[J].Journal of Colloid and Interface Science,2019,534:343-349.

[23] Huang J, Cao Y, Wang H, et al. Revealing active-site structure of porous nitrogen-defected carbon nitride for highly effective photocatalytic hydrogen evolution[J].Chemical Engineering Journal,2019,373:687-699.

[24] Yu H, Shi R, Zhao Y, et al. Photocatalysis:Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J].Advanced Materials,2017,29(16):1-7.

[25] Kang Y, Yang Y, Yin L C, et al. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis[J].Advanced Materials,2016,28(30):6471-6477.

[26] Chen Z, Lu S, Wu Q, et al. Salt-assisted synthesis of 3D open porous g-C3N4 decorated with cyano groups for photocatalytic hydrogen evolution[J].Nanoscale,2018,10(6):3008-3013.

[27] Yang L, Huang J, Shi L, et al. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production[J].Applied Catalysis B-Environmental,2017,204:335-345.

[28] Cui L, Song J, Mcguire A F, et al. Constructing highly uniform onion-ring-like graphitic carbon nitride for efficient visible-light-driven photocatalytic hydrogen evolution[J].ACS Nano,2018,12(6):5551-5558.

[29] Xu J, Wang Y, Zhu Y. Nanoporous graphitic carbon nitride with enhanced photocatalytic performance[J].Langmuir,2013,29(33):10566-10572.

魏一平, 王茗, 李海涛, 张建, 张瑞. 氰基修饰的g-C3N4制备及光催化产氢性能[J]. 人工晶体学报, 2020, 49(4): 631. WEI Yiping, WANG Ming, LI Haitao, ZHANG Jian, ZHANG Rui. Preparation and Photocatalytic Hydrogen Production Properties of Cyano-modified g-C3N4[J]. Journal of Synthetic Crystals, 2020, 49(4): 631.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!