光电工程, 2011, 38 (2): 78, 网络出版: 2011-02-28   

基于均衡化概率模型的特征匹配及其应用

Feature Matching Based on Balanced Probabilistic Model and Its Application
作者单位
江南大学 物联网工程学院,江苏 无锡 214122
摘要
通过对匹配模型中邻接矩阵的均衡化分析,在概率框架下提出一种新的特征匹配算法。采用重启动的随机游走方法建立并求解概率模型,并对匹配邻接矩阵进行了均衡化分析,提出了一种有效的双向均衡方法。方法不仅考虑了两个待匹配特征点的全部几何关联以及各项关联之间的权重值,而且考虑了关联权重的均衡性,从而可加强匹配的区分度,提高匹配的准确性。经实验证明,所提出的算法对几何畸变干扰和异常值都具有很好的鲁棒性,且适用于多种点匹配场合,在目标定位和目标识别中具有较强的适应性,有较好的实用价值。
Abstract
A new algorithm of feature matching is proposed after balancing analysis of adjacency matrix of the matching model in a probabilistic framework. A probabilistic model is established and solved using Random Walks with Restart(RWR). Then a balancing analysis to the adjacency matrix of RWR is taken, and an efficient method for bidirectional balance is presented. The approach considers not only all the interaction of the two candidate feature point sets and the weight of each relevance, but also the balancing of all relevance weight. It improves the discriminative and accuracy performance of matching. The experimental results confirm that the method is robust to outliers and geometric deformation, accurate in terms of matching rate in various matching applications, and robust and practicable in the object location and the object recognition.
参考文献

[1] Nail S K,Murthy C A. Distinct multicolored region descriptors for object recognition [J]. IEEE Transactions on Pattern

    Analysis and Machine Intelligence(S0162-8828),2007,29(7):1291-1296.

[2] . A partial intensity invariant feature descriptor for multimodal retinal image registration[J]. IEEE Transactions on Biomedical Engineering(S0018-9294), 2010, 57(7): 1707-1718.

[3] 高庆吉,李娟,马乐,等. 机器人视觉定位中的路口场景识别方法研究[J]. 中国图象图形学报,2009,14(12):2510-2516.

    GAO Qing-ji,LI Juan,MA Le,et al. Road Crossing Scene Recognition for Robot Vision based Location [J]. Journal of Image and Graphics,2009,14(12):2510-2516.

[4] k-means clustering [J]. Journal of Display Technology(S1551-319X),2010,6(7):257-262.

    Do C M,Javidi B. 3D integral imaging reconstruction of occluded objects using independent component analysis-based

[5] Leordeanu M. Spectral matching,learning,and inference for computer vision [D]. USA:Robotics Institute, Carnegie Mellon University,2009.

[6] . A probabilistic model for correspondence problems using random walks with restart[J]. Lecture Notes in Computer Science(S0302-9743), 2010, 5996: 416-425.

[7] Cour T,Srinivasan P,Shi J. Balanced graph matching [C]//Proc of the 20th Annual Conference on Neural Information

    Processing Systems,Vancouver,British Columbia,Canada,December 4-9,2006:311-320.

[8] 陈景良,陈向晖. 特殊矩阵[M]. 北京:清华大学出版社,2001:239-305.

[9] Systems(S0219-1377),2008,14(3):327-346.

    Tong H H,Faloutsos C,Pan J Y. Random walk with restart:fast solutions and applications[J]. Knowledge and Information

[10] . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision(S0920-5691), 2004, 60(2): 91-110.

[11] Kannala J,Rahtu E,Brandt S S,et al. Object recognition and segmentation by non-Rigid quasi-dense matching[C]// Proc of IEEE Conference on Computer Vision and Pattern Recognition,Anchorage,AlasKa,June 24-26,2008:1-8.

[12] Microsoft Corporation. Microsoft Research Cambridge Object Recognition Image Database [DB/OL]. 2011.http://research.microsoft.com/en-us/ downloads/b94de342-60dc-45d0-830b-9f6eff91b301/default.aspx.

陈莹, 艾春璐. 基于均衡化概率模型的特征匹配及其应用[J]. 光电工程, 2011, 38(2): 78. CHEN Ying, AI Chun-lu. Feature Matching Based on Balanced Probabilistic Model and Its Application[J]. Opto-Electronic Engineering, 2011, 38(2): 78.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!