中国激光, 2014, 41 (11): 1106002, 网络出版: 2014-09-18   

基于同步辐射光刻工艺和电铸工艺的金属纳米光栅模具制备

Fabrication of Metal Nano Grating Mold Based on Synchrotron Radiation Lithography and Nano Electroforming Process
作者单位
1 上海应用技术学院理学院, 上海 201418
2 日本立命馆大学微系统系, 日本 京都 525-8577
摘要
随着微电子技术的发展,有必要研究在基板上制备高深宽比并拥有垂直侧壁的微纳结构。基于X射线可以制备高质量的纳米母光栅,利用精密纳米电铸技术从母光栅中复制出高质量的微纳金属光栅模具。研究了一种高深宽比的金属镍光栅模具的制备技术。基于同步辐射光刻技术,在硅基板上制备线宽分别为0.25,0.5,1 μm,高2.0 μm的聚甲基丙烯酸甲酯(PMMA)光栅。利用精密电铸技术,得到线宽分别为0.25,0.5,1 μm的金属镍纳米光栅模具,1 μm的金属光栅深宽比达1.5。为了获得高质量的PMMA纳米光栅母模,使用了粘接剂,克服了光栅倒伏的缺陷,优化曝光参数,消除了结构底部出现的多余的小三角形结构。
Abstract
With the development of microelectronics technology, it is necessary to study the fabrication process for high aspect ratio and a vertical sidewalls micro-nanostructures on the substrate. High quality nano master grating can be fabricated by X-rays lithography. By using sophisticated nano electroforming technology, high-quality nano metal grating can be replicated from the mother mold grating. A technique for preparing high aspect ratio diffraction grating metal molds is introduced. Based on synchrotron radiation lithography technique, polymethyl methacrylate (PMMA) nano gratings with line width of 0.25, 0.5, 1 μm, and the height of 2.0 μm are prepared on a silicon substrate. Using precision electroforming technique, nickel nano-grating mold with the line width of 0.25, 0.5, 1 μm, and the 1 μm gratings aspect ratio of 1.5 is fabricated from the PMMA grating master mold. In order to obtain high-quality PMMA nano-grating, the adhesive is used to overcome the deficiencies of structures collapsed, by optimizing exposure parameters, small triangular structures at the bottom of the gratings are eliminated.
参考文献

[1] Fumiki Kato, Shinya Fujinawa, Yigui Li, et al.. Fabrication of high aspect ratio nano gratings using SR lithography[J]. Microsystem Technologies, 2007, 13(3-4): 221-225.

[2] Zhao Jianhua, Wang Aihua. Abbaspour-Sani E, et al.. Improved efficiency silicon solar cell module[J]. Electron Device Letters, 1997, 18(2): 48-50.

[3] 刘秋平, 何兴道, 张霭云, 等. 线性化求解非线性记录光栅耦合波方程[J]. 光学学报, 2007, 27(6): 977-980.

    Liu Qiuping, He Xingdao, Zhang Aiyun, et al.. Linear solution for coupled-wave equation of on linear recording grating[J]. Acta Optica Sinica, 2007, 27(6): 977-980.

[4] 张国平, 叶嘉雄, 李再光. 相位光栅偏振特性的耦合波分析[J]. 光学学报, 1996, 16(12): 1819-1823.

    Zhang Guoping, Ye Jiaxiong, Li Zaiguang. Coupled-wave analysis of polarization properties of phase gratings[J]. Acta Optica Sinica, 1996, 16(12): 1819-1823.

[5] 滑文强, 边风刚, 宋丽, 等. 部分相干同步辐射照射下光栅分数塔尔博特效应[J]. 光学学报, 2013, 33(1): 0134001.

    Hua Wenqiang, Bian Fenggang, Song Li, et al.. Fractional Talbot effect of phase gratings illuminated by partially coherent synchrotron radiation[J]. Acta Optica Sinica, 2013, 33(1): 0134001.

[6] 郑晶晶, 闻映红, 祁春慧, 等. 多层光纤布拉格光栅的理论与实验研究[J]. 光学学报, 2012, 32(10): 1006002.

    Zheng Jingjing, Wen Yinghong, Qi Chunhui, et al.. Theoretical and experimental investigation of fiber Bragg gratings written in multilayer single mode fiber[J]. Acta Optica Sinica, 2012, 32(10): 1006002.

[7] 李政颖, 周祖德, 童杏林, 等. 高速大容量光纤光栅解调仪的研究[J]. 光学学报, 2012, 32(3): 0306007.

    Li Zhengying, Zhou Zude, Tong Xinglin, et al.. Research of high-speed large-capacity fiber Bragg grating demodulator[J]. Acta Optica Sinica, 2012, 32(3): 0306007.

[8] 周素梅, 周常河. 二次光栅在波前测量中的应用[J]. 光学学报, 2007, 27(1): 1-4.

    Zhou Sumei, Zhou Changhe. Wavefront measurement by using quadratic grating[J]. Acta Optica Sinica, 2007, 27(1): 1-4.

[9] 张泽全, 黄元申, 庄松林, 等. 亚波长光栅的衍射效率[J]. 仪器仪表学报, 2007, 28(4): 667-671.

    Zhang Zequan, Huang Yuanshen, Zhuang Songlin, et al.. Diffraction efficiency of sub-wavelength gratings[J]. Chinese Journal of Scientific Instrument, 2007, 28(4): 667-671.

[10] 臧甲鹏, 王朝阳. 高衍射效率全息光栅的制作与复制工艺研究[J]. 现代科学仪器, 1999, (5): 46-48.

    Zang Jiapeng, Wang Chaoyang. The fabrication and replication of holographic grating with high diffraction efficiency[J]. Modern Scientific Instrument, 1999, (5): 46-48.

[11] Chen Yungpin, Lee Yuetping, Chang Jerhaur, et al.. Fabrication of concave gratings by curved surface UV-nanoimprint lithography[J]. Journal of Vacuum Science & Technology B, 2008, 26(5): 1690-1695.

[12] Luis Guillermo Villanueva, Oscar Vazquez-Mena, Cristina Martin-Olmos. Resistless fabrication of nanoimprint lithography (NIL) stamps using nano-stencil lithography[J]. Micromachines, 2013, 4(4): 370-377.

[13] 李英海. 超精密金刚石刀具—衍射光栅刻划刀[J]. 光学 精密工程, 1996, 4(3): 81-84.

    Li Yinghai. Super-fine diamond tools for ruling diffraction gratings[J]. Optics and Precision Engineering, 1996, 4(3): 81-84.

[14] 李以贵, 杉山进. 基于X光光刻的亚波长光栅[J]. 纳米技术与精密工程, 2007, 5(4): 249-252.

    Li Yigui, Sugiyama Susumu. Sub-wavelength gratings base on X-ray lithography[J]. Nano Technology and Precision Engineering, 2007, 5(4): 249-252.

[15] Li Yigui, Sugiyama Susumu. Fabrication of micro gratings on PMMA plate and curved surface by using copper mesh as X-ray lithography mask[J]. Microsystem Technologies, 2007, 13(3-4): 227-230.

[16] 李以贵, 杉山进. 用同步辐射光刻直接在有机玻璃板上制备高深宽比亚微米光栅[J]. 光学学报, 2010, 30(5): 1451-1454.

    Li Yigui, Sugiyama Susumu. Fabrication of high aspect ratio sub-micron gratings on PMMA plate based on synchrony radiation lithography[J]. Acta Optica Sinica, 2010, 30(5): 1451-1454.

[17] Chenchen Luo, Yigui Li, Sugiyama Susumu. Fabrication of high aspect ratio sub-wavelength graings based on X-ray lithography and electron beam lithography[J]. Opt & Laser Technol, 2012, 44(2): 1649-1653.

[18] Li Yigui, Jia Shuhai, Wang Hongkun, et al.. Pitch-variable transmission-type bulk gratings driven by shape memory alloy actuator[J]. Opt & Laser Technol, 2002, 34(8): 649-653.

[19] Li Yigui, Chen Di, Yang Chunsheng. Sub-microns period grating couplers fabricated by silicon mold[J]. Opt & Laser Technol, 2001, 33(8): 623-626.

[20] Li Yigui, Sasaki Minoru, Hane Kazuhiro. Micro-optical components based on silicon mold technology[J]. Opt & Lasers in Eng, 2004, 41(3): 545-552.

李以贵, 杉山进. 基于同步辐射光刻工艺和电铸工艺的金属纳米光栅模具制备[J]. 中国激光, 2014, 41(11): 1106002. Li Yigui, Sugiyama Susumu. Fabrication of Metal Nano Grating Mold Based on Synchrotron Radiation Lithography and Nano Electroforming Process[J]. Chinese Journal of Lasers, 2014, 41(11): 1106002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!