Photonics Research, 2019, 7 (4): 04000486, Published Online: Apr. 11, 2019   

Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
2 State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Copy Citation Text

Ye Zheng, Lianzhong Deng, Jianping Li, Tianqing Jia, Jianrong Qiu, Zhenrong Sun, Shian Zhang. Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field[J]. Photonics Research, 2019, 7(4): 04000486.

References

[1] T. Miyakawa, D. L. Dexter. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B, 1970, 1: 2961-2969.

[2] A. S. Gouveia-Neto, L. A. Bueno, R. F. Do Nascimento, E. A. da Silva, E. B. da Costa. White light generation by frequency upconversion in Tm3+/Ho3+/Yb3+-codoped fluorolead germanate glass. Appl. Phys. Lett., 2007, 91: 091114.

[3] D. Chen, Y. Wang, K. Zheng, T. Guo, Y. Yu, P. Huang. Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals. Appl. Phys. Lett., 2007, 91: 251903.

[4] Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, S. Buddhudu. 980  nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate-bismuth–lead glasses. Appl. Phys. Lett., 2005, 87: 171911.

[5] G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, S. Lu. Intense ultraviolet upconversion luminescence from Yb3+ and Tm3+ codoped amorphous fluoride particles synthesized by pulsed laser ablation. Opt. Commun., 2004, 242: 215-219.

[6] G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui. Infrared-to-ultraviolet up-conversion luminescence of YF3:Yb3+, Tm3+ microsheets. J. Lumin., 2007, 122: 128-130.

[7] S. Ye, B. Zhu, J. Luo, J. Chen, G. Lakshminarayana, J. Qiu. Enhanced cooperative quantum cutting in Tm3+–Yb3+ codoped glass ceramics containing LaF3 nanocrystals. Opt. Express, 2008, 16: 8989-8994.

[8] Q. Y. Zhang, G. F. Yang, Z. H. Jiang. Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE = Pr, Tb, and Tm). Appl. Phys. Lett., 2007, 91: 051903.

[9] L. Xie, Y. Wang, H. Zhang. Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer. Appl. Phys. Lett., 2009, 94: 061905.

[10] J. Li, J. Zhang, X. Zhang, Z. Hao, Y. Luo. Cooperative downconversion and near infrared luminescence of Tm3+/Yb3+ codoped calcium scandate phosphor. J. Alloys Compd., 2014, 583: 96-99.

[11] X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, J. Qiu. Cooperative downconversion in Yb3+–RE3+ (RE = Tm or Pr) codoped lanthanum borogermanate glasses. Opt. Lett., 2008, 33: 2858-2860.

[12] R. Wang, P. Zhang, S. Zhu, H. Yin, Z. Li, Z. Chen, Y. Zheng, G. Zhou, J. Yu. Spectroscopic analyses of Tm3+/Yb3+:BaGd2(MoO4)4 crystal for mid-infrared applications. Infrared Phys. Technol., 2018, 94: 1-6.

[13] N. K. Giri, A. K. Singh, D. K. Rai, S. B. Rai. Role of Yb3+ and Tm3+ ions in upconversion emission of Tb3+ under 798 and 980  nm laser excitations in Tb3+–Tm3+–Yb3+ doped tellurite glass. Opt. Commun., 2008, 281: 3547-3552.

[14] F. Wang, X. Liu. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc., 2008, 130: 5642-5643.

[15] X. Bai, H. Song, G. Pan, Y. Lei, T. Wang, X. Ren, S. Lu, B. Dong, Q. Dai, L. Fan. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects. J. Phys. Chem. C, 2007, 111: 13611-13617.

[16] Y. Sheng, L. D. Liao, A. Bandla, Y.-H. Liu, N. Thakor, M. C. Tan. Size and shell effects on the photoacoustic and luminescence properties of dual modal rare-earth-doped nanoparticles for infrared photoacoustic imaging. ACS Biomater. Sci. Eng., 2016, 2: 809-817.

[17] Y. Sun, Y. Chen, L. Tian, Y. Yu, X. Kong, J. Zhao, H. Zhang. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology, 2007, 18: 275609.

[18] J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, R. Withnall. The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J. Phys. Chem. B, 2001, 105: 948-953.

[19] Z. Bai, H. Lin, J. Johnson, S. C. R. Gui, K. Imakita, R. Montazami, M. Fujii, N. Hashemi. The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures. J. Mater. Chem. C, 2014, 2: 1736-1741.

[20] G. S. Yi, G. M. Chow. Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater., 2007, 19: 341-343.

[21] X. Xue, M. Thitsa, T. Cheng, W. Gao, D. Deng, T. Suzuki, Y. Ohishi. Laser power density dependent energy transfer between Tm3+ and Tb3+: tunable upconversion emissions in NaYF4:Tm3+, Tb3+, Yb3+ microcrystals. Opt. Express, 2016, 24: 26307-26321.

[22] C. F. Gainer, G. S. Joshua, M. Romanowski. Toward the use of two-color emission control in upconverting NaYF4:Er3+, Yb3+ nanoparticles for biomedical imaging. Proc. SPIE, 2012, 8231: 82310I.

[23] C. F. Gainer, G. S. Joshua, C. R. De Silva, M. Romanowski. Control of green and red upconversion in NaYF4:Yb3+, Er3+ nanoparticles by excitation modulation. J. Mater. Chem., 2011, 21: 18530-18533.

[24] M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B, 2000, 61: 3337-3346.

[25] R. M. El-Agmy, N. M. Al-Hosiny, S. Abdallah, M. S. Abdel-Aal. Generation of short wavelength in up-conversion of Tm3+ doped fluoride glass and its application in fiber lasers. J. Mod. Phys., 2014, 5: 123-127.

[26] F. Auzel. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev., 2004, 104: 139-174.

[27] D. Meshulach, Y. Silberberg. Coherent quantum control of multiphoton transitions by shaped ultrashort optical pulses. Phys. Rev. A, 1999, 60: 1287-1292.

[28] A. Gandman, L. Chuntonov, L. Rybak, Z. Amitay. Coherent phase control of resonance-mediated (2+1) three-photon absorption. Phys. Rev. A, 2007, 75: 031401.

[29] S. Xu, Y. Huang, Y. Yao, T. Jia, J. Ding, S. Zhang, Z. Sun. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process. J. Phys. B, 2015, 48: 135402.

[30] M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. Javier García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb. Adaptive subwavelength control of nano-optical fields. Nature, 2007, 446: 301-304.

[31] J. L. Herek, W. Wohlleben, R. J. Cogdell, D. Zeidler, M. Motzkus. Quantum control of energy flow in light harvesting. Nature, 2002, 417: 533-535.

[32] C. Brif, R. Chakrabarti, H. Rabitz. Control of quantum phenomena: past, present and future. New J. Phys., 2010, 12: 075008.

[33] N. Dudovich, B. Dayan, S. M. G. Faeder, Y. Silberberg. Transform-limited pulses are not optimal for resonant multiphoton transitions. Phys. Rev. Lett., 2001, 86: 47-50.

Ye Zheng, Lianzhong Deng, Jianping Li, Tianqing Jia, Jianrong Qiu, Zhenrong Sun, Shian Zhang. Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field[J]. Photonics Research, 2019, 7(4): 04000486.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!