大气与环境光学学报, 2015, 10 (2): 186, 网络出版: 2015-04-14   

航空/航天偏振遥感陆地上空气溶胶研究进展

Review of Air-Borne and Space-Borne Polarized Remote Sensing of Aerosol over Land
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
2 安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
摘要
POLDER是第一个可以获取全球气溶胶偏振信息的遥感仪器。自POLDER以来,人类在气溶胶偏振遥感探测方面取得 重大进展,发展了POLDER和Aerosol Polarimetry Sensor(APS)两个重要的气溶胶偏振探测系列的传感 器,分别代表了欧洲与美国在偏振探测气溶胶方面的成就。并在这些传感器的基础上研究了气溶胶反演 的方法,取得了众多成果。在研究POLDER系列和APS系列的发展进程基础上,分析和总结了气溶胶探测仪 器与偏振反演算法的发展状况。另外,对中国偏振气溶胶探测的发展,特别是针对安徽光机所研制的多角 度偏振成像仪(Directional Polarimetric Camera, DPC)和多角度偏振辐射计(Atmosphere Multi-angle Polarization Radiometer, AMPR)进行了介绍,指出中国气溶胶偏振探测发展的特点。
Abstract
POLDER is the first global polarization sensor to detect the aerosol. From then on, great improvements have been made on polarization remote sensing of aerosol. POLDER and Aerosol Polarimetry Sensor (APS) are two typical detectors of Europe and America. Based on these detectors, lots of retrieval methods were developed. The development of POLDER, APS and their related retrieval method were arranged and analyzed. Then, polarized detection of aerosol in China, and the typical sensors, the Directional Polarimetric Camera (DPC) and the Advanced Atmosphere Multi-angle Polarization Radiometer (AMPR) were introduced. At last, the characteristics of Chinese development in polarization remote sensing were discussed.
参考文献

[1] Eck T F, Holben B N, Reid J S, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. J. Geophys. Res., 1999, 104: 31333-31349.

[2] Coakley J A J, Cess D, Yurevich F B. The effect of tropospheric aerosols on the Earth’s radiation budget: A parameterization for climate models[J]. J. Atmos. Sci., 1983, 40: 116-138.

[3] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response[J]. J. Geophys. Res., 1997, 102: 6831-6864

[4] Hansen J, Nazarenko L, Ruedy R, et al. Earth’s energy imbalance: Confirmation and implications[J]. Science, 2005, 308: 1431-1435.

[5] Mauderly J L, Chow J C. Health effects of organic aerosols[J]. Inhal. Toxicol., 2008, 20(3): 257-288.

[6] 蔡惠文, 杨 军, 李晓静, 等. 近10a全球气溶胶光学厚度变化特征及其可能原因[J]. 遥感技术与应用, 2012, 27(6): 961-966.

    Cai Huiwen, Yang Jun, Li Xiaojing et al. Characteristics and possible reasons of global trend in aerosol optical depth over the past decade[J]. Remote Sensing Technology and Application, 2012, 27(6): 961-966(in Chinese).

[7] Vidot J, Santer R, Aznay O. Evaluation of the MERIS aerosol product over land with AERONET[J]. Atmos. Chem. Phys., 2008, 8: 7603-7617.

[8] Grey W M F, North P R J, Los S O, et al. Aerosol optical depth and land surface reflectance from multi-angle AATSR measurements: global validation and inter-sensor comparisons[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 2184-2197.

[9] Nicolantonio W D, Cacciari A, Scarpanti S, et al. SCIAMACHY TOA reflectance correction effects on aerosol optical depth retrieval[C]. Proc. of the First Atmospheric Science Conference, 2006.

[10] Diner D J, Martonchik J, Kahn R A, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sens. Environ. 2005, 94: 151-171.

[11] Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Trans. Geosci. Remote Sens. 1997, 35: 1286-1298.

[12] Deuzé J L, Bréon F M, Deschamps P Y, et al. Analysis of POLDER (POLarization and Directionality of Earth’s Reflectances) airborne instrument observations over land surfaces[J]. Remote Sens. Environ., 1993, 45: 137-154.

[13] Waquet F, Goloub P, Deuzé J L, et al. Aerosol retrieval over land using a multiband polarimeter and comparison with path radiance method[J]. J. Geophys. Res, 2007, 112: D11214.

[14] Waquet F, Léon J F, Cairns B, et al. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land[J]. Appl. Opt., 2009, 48(6): 1228-1236.

[15] Mishchenko M I, Travis L D. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight[J]. J. Geophys. Res., 1997, 102: 16989-17013.

[16] Cairns B, Travis L D, Russell E E. Polarization: ground-based upward-looking and aircraft/satellite-based downward-looking measurements[C]. Proc. SPIE, 1997, (3220): 103-114.

[17] Chowdhary J, Cairns B, Mishchenko M I, et al. Retrieval of aerosol scattering and absorption properties from photopolarimetric observations over the ocean during the CLAMS experiment[J]. J. Atmos. Sci., 2005, 62: 1093-1117.

[18] Waquet F, Cairns B, Knobelspiesse K, et al. Polarimetric remote sensing of aerosols over land[J]. J. Geophys. Res., 2009, 114: D01206.

[19] Deuze’ J L, Bre’on F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res., 2001, 106: 4913-4926.

[20] 程天海. 非球形大气粒子多角度偏振遥感反演研究[D]. 北京: 中国科学院遥感应用研究所博士论文, 2009.

    Cheng Tianhai. Remote Sensing of Non-spherical Atmospheric Particles from Directional Polarized Signals[D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing Applications, Graduate School of Chinese Academy of Sciences, 2009(in Chinese).

[21] Deschamps P Y, Bréon F M, Leroy M, et al. The POLDER mission: instrument characteristics and scientific objectives[J]. IEEE Trans. Geosci. Remote Sens., 1994, 32: 598-615.

[22] Fan X H, Cheng H B, Lin L F, et al. Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements[J]. Adv. Atmos. Sci., 2009, 26: 1099-1107.

[23] Herman M, Deuzé J L, Devaux C,et al. Remote sensing of aerosols over land surfaces including polarization measurements and application to POLDER measurements[J]. J. Geophys. Res., 1997, 102: 17039-17049.

[24] Hasekamp O P, Landgraf J. Retrieval of aerosol preperties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements[J]. Appl. Opt., 2007, 46: 3332-3334.

[25] Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmos. Meas. Tech. Discuss., 2011, 3: 4967-5077.

[26] Sano I. Optical thickness and Angstrom exponent of aerosols over the land and ocean from space-borne polarimetric data[J]. Adv. Space Res., 2004, 34(4): 833-837.

[27] Kawata Y, Izumiya T, Yamazaki A. The estimation of aerosol optical parameters from ADEOS/POLDER data[J]. Appl. Math. Comput., 2000, 116: 197-215.

[28] Mukai S, Sano I. Retrieval algorithm for atmospheric aerosols based on multi-angle viewing of ADEOS/POLDER[J]. Earth Planets Space, 1999, 51(11): 1247-1254.

[29] Takemata K, Izumiya T, Kawata Y. Reflectance analysis of POLDER data in Mongolia[J]. Adv. Space Res., 2002, 29(11): 1867-1872.

[30] 阎邦华. 地气系统中太阳辐射的偏振特性及其在遥感反演中的应用研究[D]. 北京: 中国科学院大气物理研究所博士论文, 1997.

    Yan Banghua. Study on the Polarization Properties of Solar Radiation in Earth-Atmosphere System and Its Application in Remote Sensing[D]. Beijing: Doctorial Dissertation of Institute of Atmospheric Physics, Chinese Academy of Sciences, 1997(in Chinese).

[31] 段民征. 陆地上空大气气溶胶和地表反照率的同时反演-卫星标量辐射和偏振信息的联合利用[D]. 北京: 中国科学院大气物理研究所博士论文, 2001.

    Duan Minzheng. Simultaneously Retrieval of Atmospheric Aerosol Optical Thickness and Surface Albedo over Land by Using Polarized Radiance as Well as Scalar Radiance from Satellite Measurement[D]. Beijing: Doctorial Dissertation of Institute of Atmospheric Physics, Chinese Academy of Sciences, 2001(in Chinese).

[32] 段民征, 吕达仁. 利用多角度POLDER偏振资料实现陆地上空大气气溶胶光学厚度和地表反照率的同时反演 I. 理论与模拟[J]. 大气科学, 2007, 31(5): 757-765.

    Duan Minzheng, Lü Daren. Simultaneously retrieving aerosol optical depth and surface albedo over land from POLDER’s multi-angle polarized measurements I: theory and simulations[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(5): 757-765(in Chinese).

[33] 段民征, 吕达仁. 利用多角度POLDER偏振资料实现陆地上空大气气溶胶光学厚度和地表反照率的同时反演 II. 实例分析[J]. 大气科学, 2008, 32: 27-35.]

    Duan Minzheng, Lü Daren. Simultaneously retrieving aerosol optical depth and surface albedo over land from POLDER’s multi-angle polarized measurement. II: A case study[J]. Chinese Journal of Atmospheric Sciences, 2008, 32: 27-35(in Chinese).

[34] Duan M, Min Q, Knut S. Impact of vertical stratification of inherent optical properties on radiative transfer in a plane-parallel turbid medium[J]. Opt. Exp., 2010, 18: 5629-5638.

[35] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sens. Environ., 2012, 124: 679-688.

[36] Cheng T H, Gu X F, Yu T, et al. The reflection and polarization properties of non-spherical aerosol particles[J]. J. Quant. Spectr. Rad. Trans., 2010, 111: 895-906.

[37] Cheng T, Gu X, Xie D, et al. Aerosol optical depth and fine-mode fraction retrieval over East Asia using multi-angular total and polarized remote sensing[J]. Atmos. Meas. Tech., 2012, 5: 501-516.

[38] Xie D H, Cheng T H, Zhang W, et al. Aerosol type over east Asian retrieval using total and polarized remote Sensing[J]. J. Quant. Spectr. Rad. Trans., 2013, 129: 15-30.

[39] Fan X, Goloub P, Derze J, et al. Evaluation of PARASOL aerosol retrieval over North East Asia[J]. Remote Sen. Environ., 2008, 112: 697-707.

[40] Peralta R J, Nardell C, Cairns B, et al. Aerosol Polarimetry Sensor for the Glory Mission[C]. Proc. SPIE, MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, 2007, 6786, doi: 10.1117/12.783307.

[41] Mishchenko M I, Cairns B, Hansen J E, et al. Monitoring of aerosol forcing of climate from space: analysis of measurement requirements[J]. J. Quant. Spectr. Rad. Trans., 2004, 88:149-161.

[42] Chowdhary J, Cairns B, Mishchenko M, et al. Retrieval of aerosol properties over the ocean using multispectral and multiangle Photopolarimetric measurements from the Research Scanning Polarimeter[J]. Geophys. Res. Lett., 2001, 28: 243-246.

[43] Diner D J, Davis A, Hancock B, et al. Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing[J]. Appl. Opt., 2007, 46(35): 8428-8445.

[44] Diner D J, Davis A, Hancock B, et al. First results from a dual photoelastic modulator-based polarimetric camera[J]. Appl. Opt., 2010, 49: 2929-2946.

[45] Zhai P W, Hu Y, Hostetler C A, et al. Uncertainty and interpretation of aerosol remote sensing due to vertical inhomogeneity[J]. J. Quant. Spectr. Rad. Trans., 2013, 114: 91-100.

[46] Hasekamp O P. Capability of multi-viewing-angle photo-polarimetric measurements for the simultaneous retrieval of aerosol and cloud properties[J]. Atmos. Meas. Tech., 2010, 3: 839-851.

[47] Knobelspiesse K, Cairns B, Ottaviani M, et al. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar[J]. Atmos. Chem. Phys., 2011, 11: 7045-7067.

[48] Knobelspiesse K, Cairns B, Redemann J, et al. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign[J]. Atmos. Chem. Phys., 2011, 11: 6245-6263.

[49] Diner D J, Garay M J, Kalashnikova O V, et al. Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) observations over California during NASA’s Polarimeter Definition Experiment (PODEX)[C]. Proc. SPIE, Polarization Science and Remote Sensing VI, 2013, 8873: 88730B-88730B-10.

[50] Gu X, Qiao Y, Wang J, et al. High Resolution Directional Polarimetric Camera (DPC) used in the remote sensing of aerosol properties[C]. Proc. SPIE, 2010, 7807: 78070W.

[51] Gu X, Cheng T, Xie D, et al. Analysis of surface and aerosol polarized reflectance for aerosol retrievals from polarized remote sensing in PRD urban region[J]. Atmos. Environ., 2011, 45: 6607-6612.

[52] Cheng T H, Gu X F, Xie D H, et al. Simultaneous retrieval of aerosol optical properties over the Pearl River Delta, China using multi-angular, multi-spectral, and polarized measurements[J]. Remote Sens. Environ., 2011, 115: 1643-1652.

[53] 宋茂新, 孙 斌, 孙晓兵, 等. 航空多角度偏振辐射计偏振定标[J]. 光学 精密工程, 2012, 20(6): 1153-1158.

    Song Maoxin, Sun Bin, Sun Xiaobing et al. Polarization calibration of airborne muti-angle polarimetric radiometer[J]. Optics and Precision Engineering, 2012, 20(6): 1153-1158(in Chinese).

[54] Wang H, Sun X B, Sun B, et al. Retrieval of aerosol optical properties over a vegetation surface using multi-angular, multi-spectral, and polarized data[J]. Adv. Atmos. Sci., 2014, 31(4): 879-887.

[55] Herman B M, Browning S R, Reagan J A. Determination of aerosol size distribution from Lidar measurements[J]. J. Atmos. Sci., 1971, 7: 663-771.

[56] 李东辉. 利用地面多角度偏振天空光观测反演气溶胶标高[D]. 北京: 中国科学院遥感与数字地球研究所博士论文, 2013.

    Li Donghui. Retrieval of Aerosol Scale Height from Ground-based Multi-angular and Polarimetric Observation of Skylight[D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2013(in Chinese).

王涵, 孙晓兵, 洪津, 汪方斌. 航空/航天偏振遥感陆地上空气溶胶研究进展[J]. 大气与环境光学学报, 2015, 10(2): 186. WANG Han, SUN Xiaobing, HONG Jin, WANG Fangbin. Review of Air-Borne and Space-Borne Polarized Remote Sensing of Aerosol over Land[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 186.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!