光学学报, 2019, 39 (11): 1101001, 网络出版: 2019-11-06   

水下无线激光传输脉冲响应建模 下载: 888次

Impulse Response Modeling for Underwater Wireless Laser Transmission
李天松 1,2,**阳荣凯 1,2,*高翔 1黄艳虎 2
作者单位
1 桂林电子科技大学信息与通信学院, 广西 桂林 541004
2 广西精密导航技术与应用重点实验室, 广西 桂林 541004
引用该论文

李天松, 阳荣凯, 高翔, 黄艳虎. 水下无线激光传输脉冲响应建模[J]. 光学学报, 2019, 39(11): 1101001.

Tiansong Li, Rongkai Yang, Xiang Gao, Yanhu Huang. Impulse Response Modeling for Underwater Wireless Laser Transmission[J]. Acta Optica Sinica, 2019, 39(11): 1101001.

参考文献

[1] 贾宁, 黄建纯. 水声通信技术综述[J]. 物理, 2014, 43(10): 650-657.

    Jia N, Huang J C. An overview of underwater acoustic communications[J]. Physics, 2014, 43(10): 650-657.

[2] Dong YH, Zhang HH, Zhang XD. On impulse response modeling for underwater wireless optical MIMO links[C]∥2014 IEEE/CIC International Conference on Communications in China (ICCC), October 13-15, 2014, Shanghai, China. New York: IEEE, 2014: 151- 155.

[3] , et al. Study on properties of light scattering based on Mie scattering theory for suspended particles in water[J]. Laser & Optoelectronics Progress, 2015, 52(1): 013001.

    Vo Quang S, Vo Quang S, Feng P, Tang B. 冯鹏, 汤斌, 等. 基于米氏散射理论的水中悬浮颗粒物散射特性计算[J]. 激光与光电子学进展, 2015, 52(1): 013001.

[4] 张莹珞, 王英民, 黄爱萍. 米氏理论下悬浮粒子对水下激光传输的影响[J]. 中国激光, 2018, 45(5): 0505002.

    Zhang Y L, Wang Y M, Huang A P. Influence of suspended particles based on Mie theory on underwater laser transmission[J]. Chinese Journal of Lasers, 2018, 45(5): 0505002.

[5] 李天松, 阳荣凯, 黄艳虎, 等. 水下激光脉冲时延特性的仿真分析[J]. 激光与光电子学进展, 2019, 56(11): 110102.

    Li T S, Yang R K, Huang Y H, et al. Simulation and analysis of time delay characteristics of underwater laser pulse[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110102.

[6] Smart JH. Underwater optical communications systems part 1: variability of water optical parameters[C]∥MILCOM 2005-2005 IEEE Military Communications Conference, October 17-20, 2005, Atlantic City, NJ, USA. New York: IEEE, 2005: 9025951.

[7] Giles JW, Bankman IN. Underwater optical communications systemspart 2: basic design considerations[C]∥MILCOM 2005-2005 IEEE Military Communications Conference, October 17-20, 2005, Atlantic City, NJ, USA. New York: IEEE, 2005: 9017679.

[8] 刘涛, 张洪明, 宋健. 水下散射信道信号到达角度分布研究[J]. 中国激光, 2018, 45(3): 0306003.

    Liu T, Zhang H M, Song J. Distribution of arriving angle of signal in underwater scattering channel[J]. Chinese Journal of Lasers, 2018, 45(3): 0306003.

[9] 刘娜, 柯杰耀, 杨苏辉, 等. 载波调制高斯脉冲激光水下传输特性的仿真分析[J]. 光学学报, 2018, 38(4): 0401003.

    Liu N, Ke J Y, Yang S H, et al. Simulation and analysis on underwater transmission characteristics of Gaussian pulse lasers with carrier modulation[J]. Acta Optica Sinica, 2018, 38(4): 0401003.

[10] 周龙杰, 周东, 曾文兵. 基于平顶光束的水下无线光通信系统的仿真分析[J]. 激光与光电子学进展, 2018, 55(7): 070603.

    Zhou L J, Zhou D, Zeng W B. Simulation analysis of undersea wireless optical communication system based on flat-topped beam[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070603.

[11] Dalgleish F R, Caimi F M, Vuorenkoski A K, et al. Efficient laser pulse dispersion codes for turbid undersea imaging and communications applications[J]. Proceedings of SPIE, 2010, 7678: 76780I.

[12] Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(9): 1620-1627.

[13] Wei W, Zhang X H, Rao J H, et al. Time domain dispersion of underwater optical wireless communication[J]. Chinese Optics Letters, 2011, 9(3): 030101.

[14] Mooradian G C, Geller M. Temporal and angular spreading of blue-green pulses in clouds[J]. Applied Optics, 1982, 21(9): 1572-1577.

[15] Aharonovich M, Arnon S. Performance improvement of optical wireless communication through fog with a decision feedback equalizer[J]. Journal of the Optical Society of America A, 2005, 22(8): 1646-1654.

[16] Mobley CD. Light and water: radiative transfer in natural waters[M]. San Diego: Academic Press, 1994.

[17] Petzold TJ. Volume scattering functions for selected ocean waters[R]. San Diego,CA: Scripps Institution of Oceanography La Jolla Ca Visibility Lab, 1972: 72- 78.

[18] Li Y M, Leeson M S, Li X F. Impulse response modeling for underwater optical wireless channels[J]. Applied Optics, 2018, 57(17): 4815-4823.

[19] Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3-14.

[20] Mobley C D, Gentili B, Gordon H R, et al. Comparison of numerical models for computing underwater light fields[J]. Applied Optics, 1993, 32(36): 7484-7504.

[21] Henyey L C, Greenstein J L. Diffuse radiation in the galaxy[J]. The Astrophysical Journal, 1941, 93: 70-83.

[22] Fournier G R, Forand J L. Analytic phase function for ocean water[J]. Proceedings of SPIE, 1994, 2258: 194-201.

[23] Cox W, Muth J. Simulating channel losses in an underwater optical communication system[J]. Journal of the Optical Society of America A, 2014, 31(5): 920-934.

李天松, 阳荣凯, 高翔, 黄艳虎. 水下无线激光传输脉冲响应建模[J]. 光学学报, 2019, 39(11): 1101001. Tiansong Li, Rongkai Yang, Xiang Gao, Yanhu Huang. Impulse Response Modeling for Underwater Wireless Laser Transmission[J]. Acta Optica Sinica, 2019, 39(11): 1101001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!