液晶与显示, 2020, 35 (7): 662, 网络出版: 2020-10-27  

熵驱动无机纳米棒液晶态自组装

Entropy-driven liquid crystalline self-assembly of inorganic nanorods
作者单位
北京航空航天大学 物理学院, 北京102206
摘要
针对有机液晶材料在实际应用中存在热稳定性不足和温度区间较窄等问题, 结合快速发展的纳米材料合成及组装技术, 发挥无机纳米材料富电子、高热稳定的特点, 发展新型无机液晶态材料是目前一个热点研究领域。本文从归纳液晶态组装所蕴含的相变规律及调控机理出发, 包括Onsager硬棒理论、DLVO理论、胶体系统中的熵作用(如排空吸引和位阻排斥), 系统地综述了近年来以熵为主要驱动力的无机液晶态组装的研究进展。进而, 以理想的组装单元之一——金纳米棒为例, 深入讨论了组装方法、颗粒间相互作用对调控组装结构的影响规律, 并例举了所得组装体在光电子器件中的潜在应用。最后, 通过总结组装技术用以制备无机液晶态材料仍存在的问题, 给出可能的解决方案并对未来的发展方向进行了展望。
Abstract
Owing to the existing issues of poor thermal stability and narrow temperature interval in applications of organic liquid crystal materials, developing novel inorganic liquid crystal is an alternative strategy due to the virtues of electron-rich characteristics and high thermal stability of the well-developed inorganic nanomaterials. Starting from the summarization of the phase transition rules and the regulation mechanisms of liquid crystalline self-assembly, including Onsager theory, DLVO theory, and entropy effects on depletion attraction and steric repulsion, this review demonstrates recent progress in entropy-driven liquid crystalline self-assembly of the inorganic nanomaterials. Taking the ideal building block of gold nanorods as an example, the regulations of the advanced self-assembly methods and the interactions between the nanorods on the diverse assembly structures are discussed, and their potential applications in optoelectronic devices are illustrated. Finally, future developments are prospected aiming at the problems in preparing inorganic liquid crystal materials using the self-assembly technology.
参考文献

[1] JIA H P. Who will win the future of display technologies? [J]. National Science Review, 2018, 5(3): 427-431.

    JIA H P. Who will win the future of display technologies? [J]. National Science Review, 2018, 5(3): 427-431.

[2] IM Y, BYUN S Y, KIM J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Advanced Functional Materials, 2017, 27(13): 1603007.

    IM Y, BYUN S Y, KIM J H, et al. Recent progress in high-efficiency blue-light-emitting materials for organic light-emitting diodes [J]. Advanced Functional Materials, 2017, 27(13): 1603007.

[3] CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives [J]. Light: Science & Applications, 2018, 7(3): 17168.

    CHEN H W, LEE J H, LIN B Y, et al. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives [J]. Light: Science & Applications, 2018, 7(3): 17168.

[4] SMALYUKH I I. Liquid crystal colloids [J]. Annual Review of Condensed Matter Physics, 2018, 9: 207-226.

    SMALYUKH I I. Liquid crystal colloids [J]. Annual Review of Condensed Matter Physics, 2018, 9: 207-226.

[5] LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels [J]. Science, 2020, 367(6478): 667-671

    LI H Z, QIU C L, REN S J, et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels [J]. Science, 2020, 367(6478): 667-671

[6] FREISER M J. Ordered states of a nematic liquid [J]. Physical Review Letters, 1970, 24(19): 1041-1043.

    FREISER M J. Ordered states of a nematic liquid [J]. Physical Review Letters, 1970, 24(19): 1041-1043.

[7] ALBEN R. Phase transitions in a fluid of biaxial particles [J].Physical Review Letters, 1973, 30(17): 778-781.

    ALBEN R. Phase transitions in a fluid of biaxial particles [J].Physical Review Letters, 1973, 30(17): 778-781.

[8] STRALEY J P. Ordered phases of a liquid of biaxial particles [J]. Physical Review A, 1974, 10(5): 1881-1887.

    STRALEY J P. Ordered phases of a liquid of biaxial particles [J]. Physical Review A, 1974, 10(5): 1881-1887.

[9] VAN DEN POL E, PETUKHOV A V, THIES-WEESIE D M E, et al. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles [J]. Physical Review Letters, 2009, 103(25): 258301.

    VAN DEN POL E, PETUKHOV A V, THIES-WEESIE D M E, et al. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles [J]. Physical Review Letters, 2009, 103(25): 258301.

[10] VAN BRUGGEN M P B, LEKKERKERKER H N W. Metastability and multistability: gelation and liquid crystal formation in suspensions of colloidal rods [J]. Langmuir, 2002, 18(19): 7141-7145.

    VAN BRUGGEN M P B, LEKKERKERKER H N W. Metastability and multistability: gelation and liquid crystal formation in suspensions of colloidal rods [J]. Langmuir, 2002, 18(19): 7141-7145.

[11] ZHAO N N, YAN L M, ZHAO X Y, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications [J]. Chemical Reviews, 2019, 119(3): 1666-1762.

    ZHAO N N, YAN L M, ZHAO X Y, et al. Versatile types of organic/inorganic nanohybrids: from strategic design to biomedical applications [J]. Chemical Reviews, 2019, 119(3): 1666-1762.

[12] CHAUDHARI P, LACEY J, DOYLE J, et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays [J]. Nature, 2001, 411(6833): 56-59.

    CHAUDHARI P, LACEY J, DOYLE J, et al. Atomic-beam alignment of inorganic materials for liquid-crystal displays [J]. Nature, 2001, 411(6833): 56-59.

[13] ONG L L, HANIKEL N, YAGHI O K, et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components [J]. Nature, 2017, 552(7683): 72-77.

    ONG L L, HANIKEL N, YAGHI O K, et al. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components [J]. Nature, 2017, 552(7683): 72-77.

[14] FREEMAN R, HAN M,LVAREZ Z, et al. Reversible self-assembly of superstructured networks [J]. Science, 2018, 362(6416): 808-813

    FREEMAN R, HAN M,LVAREZ Z, et al. Reversible self-assembly of superstructured networks [J]. Science, 2018, 362(6416): 808-813

[15] SERVICE F R. How far can we push chemical self-assembly? [J]. Science, 2005, 309(5731): 95.

    SERVICE F R. How far can we push chemical self-assembly? [J]. Science, 2005, 309(5731): 95.

[16] FAN J A, WU C, BAO K, et al. Self-assembled plasmonic nanoparticle clusters [J]. Science, 2010, 328(5982): 1135-1138.

    FAN J A, WU C, BAO K, et al. Self-assembled plasmonic nanoparticle clusters [J]. Science, 2010, 328(5982): 1135-1138.

[17] ONSAGER L. The effects of shape on the interaction of colloidal particles [J]. Annals of the New York Academy of Science, 1949, 51(4): 627-659.

    ONSAGER L. The effects of shape on the interaction of colloidal particles [J]. Annals of the New York Academy of Science, 1949, 51(4): 627-659.

[18] ZOCHER H. ber freiwillige strukturbildung in solen. (Eine neue art anisotrop flüssiger medien.) [J].Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 147(1): 91-110.

    ZOCHER H. ber freiwillige strukturbildung in solen. (Eine neue art anisotrop flüssiger medien.) [J].Zeitschrift Für Anorganische Und Allgemeine Chemie, 1925, 147(1): 91-110.

[19] JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.

    JANA N R, GEARHEART L, MURPHY C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template [J]. Advanced Materials, 2001, 13(18): 1389-1393.

[20] BISHOP K J M, WILMER C E, SOH S, et al. Nanoscale forces and their uses in self-assembly [J]. Small, 2009, 5(14): 1600-1630.

    BISHOP K J M, WILMER C E, SOH S, et al. Nanoscale forces and their uses in self-assembly [J]. Small, 2009, 5(14): 1600-1630.

[21] LIU Q K, SENYUK B, TANG J W, et al. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter [J]. Physical Review Letters, 2012, 109(8): 088301.

    LIU Q K, SENYUK B, TANG J W, et al. Plasmonic complex fluids of nematiclike and helicoidal self-assemblies of gold nanorods with a negative order parameter [J]. Physical Review Letters, 2012, 109(8): 088301.

[22] JIANG G Q, HORE M J A, GAM S, et al. Gold nanorods dispersed in homopolymer films: Optical properties controlled by self-assembly and percolation of nanorods [J]. Acs Nano, 2012, 6(2): 1578-1588.

    JIANG G Q, HORE M J A, GAM S, et al. Gold nanorods dispersed in homopolymer films: Optical properties controlled by self-assembly and percolation of nanorods [J]. Acs Nano, 2012, 6(2): 1578-1588.

[23] KALSIN A M, KOWALCZYK B, WESSON P, et al. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations [J]. Journal of the American Chemical Society, 2007, 129(21): 6664-6665.

    KALSIN A M, KOWALCZYK B, WESSON P, et al. Studying the thermodynamics of surface reactions on nanoparticles by electrostatic titrations [J]. Journal of the American Chemical Society, 2007, 129(21): 6664-6665.

[24] DONG Y H, LAAKSONEN A, CAO W, et al. AFM study of pH-ependent adhesion of single protein to TiO2 surface [J]. Advanced Materials Interfaces, 2019, 6(14): 1900411.

    DONG Y H, LAAKSONEN A, CAO W, et al. AFM study of pH-ependent adhesion of single protein to TiO2 surface [J]. Advanced Materials Interfaces, 2019, 6(14): 1900411.

[25] ZHENG Y H, ROSA L, THAI T, et al. Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity [J]. Journal of Materials Chemistry A, 2015, 3(1): 240-249.

    ZHENG Y H, ROSA L, THAI T, et al. Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity [J]. Journal of Materials Chemistry A, 2015, 3(1): 240-249.

[26] MURRAY C B, KAGAN C R, BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270(5240): 1335-1338.

    MURRAY C B, KAGAN C R, BAWENDI M G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices [J]. Science, 1995, 270(5240): 1335-1338.

[27] KALSIN A M, FIALKOWSKI M, PASZEWSKI M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J]. Science, 2006, 312(5772): 420-424.

    KALSIN A M, FIALKOWSKI M, PASZEWSKI M, et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J]. Science, 2006, 312(5772): 420-424.

[28] SASAKI E, DRAGOMAN R M, MANTRI S, et al. Self-assembly of proteinaceous shells around positively charged gold nanomaterials enhances colloidal stability in high-ionic-strength buffers [J]. Chembiochem, 2020, 21(1/2): 74-79.

    SASAKI E, DRAGOMAN R M, MANTRI S, et al. Self-assembly of proteinaceous shells around positively charged gold nanomaterials enhances colloidal stability in high-ionic-strength buffers [J]. Chembiochem, 2020, 21(1/2): 74-79.

[29] BATES M A, FRENKEL D. Phase behavior of two-dimensional hard rod fluids [J]. The Journal of Chemical Physics, 2000, 112(22): 10034-10041.

    BATES M A, FRENKEL D. Phase behavior of two-dimensional hard rod fluids [J]. The Journal of Chemical Physics, 2000, 112(22): 10034-10041.

[30] AUER S, FRENKEL D. Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].The Journal of Chemical Physics, 2004, 120(6): 3015-3029.

    AUER S, FRENKEL D. Numerical prediction of absolute crystallization rates in hard-sphere colloids [J].The Journal of Chemical Physics, 2004, 120(6): 3015-3029.

[31] YE B, QIAN G D, FAN X P, et al. Self-assembled superlattices from colloidal TiO2 nanorods [J]. Current Nanoscience, 2010, 6(3): 262-268.

    YE B, QIAN G D, FAN X P, et al. Self-assembled superlattices from colloidal TiO2 nanorods [J]. Current Nanoscience, 2010, 6(3): 262-268.

[32] MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Advanced Materials, 2002, 14(1): 80-82.

    MURPHY C J, JANA N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Advanced Materials, 2002, 14(1): 80-82.

[33] KHANAL B P, ZUBAREV E R. Rings of nanorods [J]. Angewandte Chemie, 2007, 46(13): 2195-2198.

    KHANAL B P, ZUBAREV E R. Rings of nanorods [J]. Angewandte Chemie, 2007, 46(13): 2195-2198.

[34] WEI W B, BAI F, FAN H Y. Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures [J]. IScience, 2019, 11: 272-293.

    WEI W B, BAI F, FAN H Y. Surfactant-assisted cooperative self-assembly of nanoparticles into active nanostructures [J]. IScience, 2019, 11: 272-293.

[35] ASAKURA S, OOSAWA F. On interaction between two bodies immersed in a solution of macromolecules [J].The Journal of Chemical Physics, 1954, 22(7): 1255-1256.

    ASAKURA S, OOSAWA F. On interaction between two bodies immersed in a solution of macromolecules [J].The Journal of Chemical Physics, 1954, 22(7): 1255-1256.

[36] ABBAS S, LODGE T P. Depletion interactions: a new control parameter for the self-assembly of diblock copolymer micelles [J]. Physical Review Letters, 2007, 99(13): 137802.

    ABBAS S, LODGE T P. Depletion interactions: a new control parameter for the self-assembly of diblock copolymer micelles [J]. Physical Review Letters, 2007, 99(13): 137802.

[37] KAPLAN P D, ROUKE J L, YODH A G, et al. Entropically driven surface phase separation in binary colloidal mixtures [J]. Physical Review Letters, 1994, 72(4): 582-585.

    KAPLAN P D, ROUKE J L, YODH A G, et al. Entropically driven surface phase separation in binary colloidal mixtures [J]. Physical Review Letters, 1994, 72(4): 582-585.

[38] ZHAO K, MASON T G. Directing colloidal self-assembly through roughness-controlled depletion attractions [J]. Physical Review Letters, 2007, 99(26): 268301.

    ZHAO K, MASON T G. Directing colloidal self-assembly through roughness-controlled depletion attractions [J]. Physical Review Letters, 2007, 99(26): 268301.

[39] ITO K, YOSHIDA H, ISE N. Void structure in colloidal dispersions [J]. Science, 1994, 263(5143): 66-68.

    ITO K, YOSHIDA H, ISE N. Void structure in colloidal dispersions [J]. Science, 1994, 263(5143): 66-68.

[40] LALATONNE Y, MOTTE L, RICHARDI J,et al. Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals [J]. Physical Review E, 2005, 71(1): 011404.

    LALATONNE Y, MOTTE L, RICHARDI J,et al. Influence of short-range interactions on the mesoscopic organization of magnetic nanocrystals [J]. Physical Review E, 2005, 71(1): 011404.

[41] FINNEGAN J R, LUNN D J, GOULD O E C, et al. Gradient crystallization-driven self-assembly: cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers [J]. Journal of the American Chemical Society, 2014, 136(39): 13835-13844.

    FINNEGAN J R, LUNN D J, GOULD O E C, et al. Gradient crystallization-driven self-assembly: cylindrical micelles with “patchy” segmented coronas via the coassembly of linear and brush block copolymers [J]. Journal of the American Chemical Society, 2014, 136(39): 13835-13844.

[42] BICKELHAUPT F M, BAERENDS E J. The case for steric repulsion causing the staggered conformation of ethane [J]. Angewandte Chemie, 2003, 42(35): 4183-4188.

    BICKELHAUPT F M, BAERENDS E J. The case for steric repulsion causing the staggered conformation of ethane [J]. Angewandte Chemie, 2003, 42(35): 4183-4188.

[43] GRZELCZAK M, SNCHEZ-IGLESIAS A, MEZERJI H H, et al. Steric hindrance induces crosslike self-assembly of gold nanodumbbells [J]. Nano Letters, 2012, 12(8): 4380-4384.

    GRZELCZAK M, SNCHEZ-IGLESIAS A, MEZERJI H H, et al. Steric hindrance induces crosslike self-assembly of gold nanodumbbells [J]. Nano Letters, 2012, 12(8): 4380-4384.

[44] SHARMA V, PARK K, SRINIVASARAO M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly [J]. Materials Science and Engineering: R: Reports, 2009, 65(1/3): 1-38.

    SHARMA V, PARK K, SRINIVASARAO M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly [J]. Materials Science and Engineering: R: Reports, 2009, 65(1/3): 1-38.

[45] CHOI J H, WANG H, OH S J, et al. Exploiting the colloidal nanocrystal library to construct electronic devices [J]. Science, 2016, 352(6282): 205-208.

    CHOI J H, WANG H, OH S J, et al. Exploiting the colloidal nanocrystal library to construct electronic devices [J]. Science, 2016, 352(6282): 205-208.

[46] TORTORA L, PARK H S, KANG S W, et al. Self-assembly, condensation, and order in aqueous lyotropic chromonic liquid crystals crowded with additives [J]. Soft Matter, 2008, 6(17): 4157-4167.

    TORTORA L, PARK H S, KANG S W, et al. Self-assembly, condensation, and order in aqueous lyotropic chromonic liquid crystals crowded with additives [J]. Soft Matter, 2008, 6(17): 4157-4167.

[47] XIE Y, LI Y Y, WEI G Q, et al. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation [J]. Nanoscale, 2018, 10(9): 4218-4227.

    XIE Y, LI Y Y, WEI G Q, et al. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation [J]. Nanoscale, 2018, 10(9): 4218-4227.

[48] REN Z M, CHEN C, HU R, et al. Two-step self-assembly and lyotropic liquid crystal behavior of TiO2 nanorods [J]. Journal of Nanomaterials, 2012, 2012: 180989.

    REN Z M, CHEN C, HU R, et al. Two-step self-assembly and lyotropic liquid crystal behavior of TiO2 nanorods [J]. Journal of Nanomaterials, 2012, 2012: 180989.

[49] LIU Q K, CAMPBELL M G, EVANS J S, et al. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals [J]. Advanced Materials, 2014, 26(42): 7178-7184.

    LIU Q K, CAMPBELL M G, EVANS J S, et al. Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals [J]. Advanced Materials, 2014, 26(42): 7178-7184.

[50] LI L, DENG S X, WANG H, et al. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing [J]. Nanotechnology, 2019, 30(25): 255503.

    LI L, DENG S X, WANG H, et al. A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing [J]. Nanotechnology, 2019, 30(25): 255503.

[51] KINKEAD B, HEGMANN T.Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture [J]. Journal of Materials Chemistry, 2010, 20(3): 448-458.

    KINKEAD B, HEGMANN T.Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture [J]. Journal of Materials Chemistry, 2010, 20(3): 448-458.

[52] 严平, 李在均.双功能石墨烯量子点的制备及在pH荧光检测和细胞成像中的应用[J].分析化学, 2018, 46(5): 670-677.

    严平, 李在均.双功能石墨烯量子点的制备及在pH荧光检测和细胞成像中的应用[J].分析化学, 2018, 46(5): 670-677.

    YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of pH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

    YAN P, LI Z J. Synthesis of bifunctional graphene quantum dots and its application in fluorescence detection of pH and cell imaging [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 670-677. (in Chinese)

[53] 邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6): 960-968.

    邹小波, 史永强, 郑悦, 等.基于荧光共振能量转移的金纳米粒子/碳量子点荧光纳米探针检测精氨酸[J].分析化学, 2018, 46(6): 960-968.

    ZOU X B, SHI Y Q, ZHENG Y,et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

    ZOU X B, SHI Y Q, ZHENG Y,et al. Detection of arginine by AuNPs/CQDs nanoprobes based on fluorescence resonance energy transfer [J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 960-968. (in Chinese)

[54] 王明丽, 孙亚楠, 郭佳怡, 等.硫化镉量子点对三联吡啶钌电化学发光的增敏作用及用于邻苯二酚的检测[J].分析化学, 2018, 46(5): 780-786.

    王明丽, 孙亚楠, 郭佳怡, 等.硫化镉量子点对三联吡啶钌电化学发光的增敏作用及用于邻苯二酚的检测[J].分析化学, 2018, 46(5): 780-786.

    WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of Ru(bpy)32+ and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

    WANG M L, SUN Y N, GUO J Y, et al. Amplification effect of CdS quantum dots on electrogenerated chemiluminescence of Ru(bpy)32+ and its application in determination of catechol [J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 780-786. (in Chinese)

[55] CHEN X, CHEN L, CHEN Y W. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells [J]. RSC Advances, 2014, 4(7): 3627-3632.

    CHEN X, CHEN L, CHEN Y W. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells [J]. RSC Advances, 2014, 4(7): 3627-3632.

[56] WANG F Z, ZHOU Y S, PAN X H, et al. Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide [J]. Physical Chemistry Chemical Physics, 2018, 20(10): 6959-6969.

    WANG F Z, ZHOU Y S, PAN X H, et al. Enhanced photocatalytic properties of ZnO nanorods by electrostatic self-assembly with reduced graphene oxide [J]. Physical Chemistry Chemical Physics, 2018, 20(10): 6959-6969.

[57] PASTEUR L. On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization [J]. Annales de Chimie et de Physique, 1848, 24: 442-459.

    PASTEUR L. On the relations that can exist between crystalline form, and chemical composition, and the sense of rotary polarization [J]. Annales de Chimie et de Physique, 1848, 24: 442-459.

[58] BISOYI H K, LI Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures [J]. Angewandte Chemie International Edition, 2016, 55(9): 2994-3010.

    BISOYI H K, LI Q. Light-directed dynamic chirality inversion in functional self-organized helical superstructures [J]. Angewandte Chemie International Edition, 2016, 55(9): 2994-3010.

[59] CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2019, doi: 10.1002/adma.201903665.

    CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2019, doi: 10.1002/adma.201903665.

[60] POP F, ZIGON N, AVARVARI N. Main-group-based electro-and photoactive chiral materials [J].Chemical Reviews, 2019, 119(14): 8435-8478.

    POP F, ZIGON N, AVARVARI N. Main-group-based electro-and photoactive chiral materials [J].Chemical Reviews, 2019, 119(14): 8435-8478.

[61] FU J X, NAYANI K, PARK J O, et al. Spontaneous emergence of twist and the formation of a monodomain in lyotropic chromonic liquid crystals confined to capillaries [J]. NPG Asia Materials, 2017, 9(6): e393.

    FU J X, NAYANI K, PARK J O, et al. Spontaneous emergence of twist and the formation of a monodomain in lyotropic chromonic liquid crystals confined to capillaries [J]. NPG Asia Materials, 2017, 9(6): e393.

[62] NAYANI K, FU J X, CHANG R, et al. Using chiral tactoids as optical probes to study the aggregation behavior of chromonics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): 3826-3831.

    NAYANI K, FU J X, CHANG R, et al. Using chiral tactoids as optical probes to study the aggregation behavior of chromonics [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): 3826-3831.

[63] CHENG G Q, YU W, LIU K, et al. Entropy-driven self-assembly of chiral nematic liquid crystalline phases of agnr@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition [J]. Nano Research, 2017, 11(2): 1018-1028.

    CHENG G Q, YU W, LIU K, et al. Entropy-driven self-assembly of chiral nematic liquid crystalline phases of agnr@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition [J]. Nano Research, 2017, 11(2): 1018-1028.

[64] SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application [J]. Advanced Materials, 2019, doi: 10.1002/adma.201900110.

    SANG Y T, HAN J L, ZHAO T H, et al. Circularly polarized luminescence in nanoassemblies: generation, amplification, and application [J]. Advanced Materials, 2019, doi: 10.1002/adma.201900110.

[65] ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings [J]. Advanced Materials, 2019, 31(27): 1806172.

    ZOLA R S, BISOYI H K, WANG H, et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings [J]. Advanced Materials, 2019, 31(27): 1806172.

[66] BIAN K F, SCHUNK H, YE D M, et al. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling [J]. Nature Communications, 2018, 9(1): 2365.

    BIAN K F, SCHUNK H, YE D M, et al. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling [J]. Nature Communications, 2018, 9(1): 2365.

[67] GONG J X, NEWMAN R S, ENGEL M, et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices [J]. Nature Communications, 2017, 8(1): 14038.

    GONG J X, NEWMAN R S, ENGEL M, et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices [J]. Nature Communications, 2017, 8(1): 14038.

[68] GONG J X, LI G D, TANG Z Y. Self-assembly of noble metal nanocrystals: fabrication, optical property, and application [J]. Nano Today, 2012, 7(6): 564-585.

    GONG J X, LI G D, TANG Z Y. Self-assembly of noble metal nanocrystals: fabrication, optical property, and application [J]. Nano Today, 2012, 7(6): 564-585.

[69] HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures [J]. Chemical Reviews, 2012, 111(6): 3913-3961.

    HALAS N J, LAL S, CHANG W S, et al. Plasmons in strongly coupled metallic nanostructures [J]. Chemical Reviews, 2012, 111(6): 3913-3961.

[70] TABOR C, VAN HAUTE D, EL-SAYED M A. Effect of orientation on plasmonic coupling between gold nanorods [J]. ACS Nano, 2019, 3(11): 3670-3678.

    TABOR C, VAN HAUTE D, EL-SAYED M A. Effect of orientation on plasmonic coupling between gold nanorods [J]. ACS Nano, 2019, 3(11): 3670-3678.

[71] FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries [J]. Nano Letters, 2009, 9(4): 1651-1658.

    FUNSTON A M, NOVO C, DAVIS T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries [J]. Nano Letters, 2009, 9(4): 1651-1658.

[72] WANG L, JIN Y, DENG J,et al. Gold nanorods-based fret assay for sensitive detection of Pb2+ using 8-17dnazyme [J]. Analyst, 2011, 136(24): 5169-5174.

    WANG L, JIN Y, DENG J,et al. Gold nanorods-based fret assay for sensitive detection of Pb2+ using 8-17dnazyme [J]. Analyst, 2011, 136(24): 5169-5174.

[73] ZENG Q H, ZHANG Y L, LIU X M, et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods fret nanoplatform [J]. Chemical Communications, 2012, 48(12): 1781-1783.

    ZENG Q H, ZHANG Y L, LIU X M, et al. Multiple homogeneous immunoassays based on a quantum dots-gold nanorods fret nanoplatform [J]. Chemical Communications, 2012, 48(12): 1781-1783.

[74] LIU G L, FENG D Q, QIAN Y L, et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods [J]. Talanta, 2019, 201: 90-95.

    LIU G L, FENG D Q, QIAN Y L, et al. Construction of FRET biosensor for off-on detection of lead ions based on carbon dots and gold nanorods [J]. Talanta, 2019, 201: 90-95.

[75] WU M M, WANG X Y, WANG K, et al. Sequence-specific detection of cytosine methylation in DNA via the FRET mechanism between upconversion nanoparticles and gold nanorods [J]. Chemical Communications, 2016, 52(54): 8377-8380.

    WU M M, WANG X Y, WANG K, et al. Sequence-specific detection of cytosine methylation in DNA via the FRET mechanism between upconversion nanoparticles and gold nanorods [J]. Chemical Communications, 2016, 52(54): 8377-8380.

[76] DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829.

    DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature, 1997, 389(6653): 827-829.

[77] XIE Y, GUO S M, GUO C F, et al. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism [J]. Langmuir, 2013, 29(21): 6232-6241.

    XIE Y, GUO S M, GUO C F, et al. Controllable two-stage droplet evaporation method and its nanoparticle self-assembly mechanism [J]. Langmuir, 2013, 29(21): 6232-6241.

[78] HUANG Y, ZHANG X, RINGE E,et al. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays [J]. Scientific Reports, 2016, 6(1): 23159.

    HUANG Y, ZHANG X, RINGE E,et al. Tunable lattice coupling of multipole plasmon modes and near-field enhancement in closely spaced gold nanorod arrays [J]. Scientific Reports, 2016, 6(1): 23159.

[79] REGUERA J, LANGER J,DE ABERASTURI D J, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.

    REGUERA J, LANGER J,DE ABERASTURI D J, et al. Anisotropic metal nanoparticles for surface enhanced Raman scattering [J]. Chemical Society Reviews, 2017, 46(13): 3866-3885.

[80] WEI W B, WANG Y R, JI J J, et al. Fabrication of large-area arrays of vertically aligned gold nanorods [J]. Nano Letters, 2018, 18(7): 4467-4472.

    WEI W B, WANG Y R, JI J J, et al. Fabrication of large-area arrays of vertically aligned gold nanorods [J]. Nano Letters, 2018, 18(7): 4467-4472.

[81] XIE Y, GUO S M, JI Y L, et al. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol [J]. Langmuir, 2011, 27(18): 11394-11400.

    XIE Y, GUO S M, JI Y L, et al. Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol [J]. Langmuir, 2011, 27(18): 11394-11400.

[82] GWO S,CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics [J]. Chemical Society Reviews, 2016, 45(20): 5672-5716.

    GWO S,CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics [J]. Chemical Society Reviews, 2016, 45(20): 5672-5716.

[83] ALVAREZ-PUEBLA R A, AGARWAL A, MANNA P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157-8161.

    ALVAREZ-PUEBLA R A, AGARWAL A, MANNA P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20): 8157-8161.

[84] POMPA P P, MARTIRADONNA L, TORRE A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology, 2006, 1(2): 126-130.

    POMPA P P, MARTIRADONNA L, TORRE A D, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control [J]. Nature Nanotechnology, 2006, 1(2): 126-130.

[85] PENG B, LI Z P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence [J]. Nanoscale, 2014, 6(11): 5592-5598.

    PENG B, LI Z P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence [J]. Nanoscale, 2014, 6(11): 5592-5598.

[86] XIE Y, JIA Y F, LIANG Y J, et al. Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices [J]. Chemical Communications, 2012, 48(15): 2128-2130.

    XIE Y, JIA Y F, LIANG Y J, et al. Real-time observations on crystallization of gold nanorods into spiral or lamellar superlattices [J]. Chemical Communications, 2012, 48(15): 2128-2130.

[87] XIE Y, LIANG Y J, CHEN D X, et al. Vortical superlattices in a gold nanorods’ self-assembled monolayer [J]. Nanoscale, 2014, 6(6): 3064-3068.

    XIE Y, LIANG Y J, CHEN D X, et al. Vortical superlattices in a gold nanorods’ self-assembled monolayer [J]. Nanoscale, 2014, 6(6): 3064-3068.

[88] LIANG Y J, XIE Y, CHEN D X, et al. Symmetry control of nanorod superlattice driven by a governing force [J]. Nature Communications, 2017, 8(1): 1410.

    LIANG Y J, XIE Y, CHEN D X, et al. Symmetry control of nanorod superlattice driven by a governing force [J]. Nature Communications, 2017, 8(1): 1410.

[89] LLOYD J A, LIU Y W, NG S H, et al. Self-assembly of spherical and rod-shaped nanoparticles with full positional control [J]. Nanoscale, 2019, 11(47): 22841-22848.

    LLOYD J A, LIU Y W, NG S H, et al. Self-assembly of spherical and rod-shaped nanoparticles with full positional control [J]. Nanoscale, 2019, 11(47): 22841-22848.

[90] SAU T K, MURPHY C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir, 2005, 21(7): 2923-2929.

    SAU T K, MURPHY C J. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes [J]. Langmuir, 2005, 21(7): 2923-2929.

[91] BARRIGA H M G, HOLME M N, STEVENS M M. Cubosomes: the next generation of smart lipid nanoparticles? [J]. Angewandte Chemie International Edition, 2019, 58(10): 2958-2978.

    BARRIGA H M G, HOLME M N, STEVENS M M. Cubosomes: the next generation of smart lipid nanoparticles? [J]. Angewandte Chemie International Edition, 2019, 58(10): 2958-2978.

[92] MAYER M, SCHNEPF M J, KONIG T A F, et al. Colloidal self-assembly concepts for plasmonic metasurfaces [J]. Advanced Optical Materials, 2019, 7(1): 1800564.

    MAYER M, SCHNEPF M J, KONIG T A F, et al. Colloidal self-assembly concepts for plasmonic metasurfaces [J]. Advanced Optical Materials, 2019, 7(1): 1800564.

刘晓多, 谢勇. 熵驱动无机纳米棒液晶态自组装[J]. 液晶与显示, 2020, 35(7): 662. LIU Xiao-duo, XIE Yong. Entropy-driven liquid crystalline self-assembly of inorganic nanorods[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 662.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!