Frontiers of Optoelectronics, 2013, 6 (1): 46, 网络出版: 2013-04-15   

Key technologies and system proposals of TWDM-PON

Key technologies and system proposals of TWDM-PON
作者单位
The State Key Lab of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
摘要
Abstract
In this paper, key technologies, system proposals and future directions of next generation passive optical networks stage 2 (NG-PON2) are reviewed. We first discuss the potential solutions for NG-PON2 standardization. Then we focus on time and wavelength division multiplexed PON (TWDM-PON), which is the primary solution selected by Full Service Access Network (FSAN). The key technologies in TWDM-PON configuration are analyzed, including how to improve the bandwidth capacity and power budget of the system, and choose upstream tunable transceiver, etc. Several system proposals are illustrated as candidates for NG-PON2 configuration.
参考文献

[1] Wong E. Next-generation broadband access networks and technologies. Journal of Lightwave Technology, 2012, 30(4): 597-608

[2] Vetter P. Next generation optical access technologies. In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.3.G

[3] Effenberger F. XG-PON1 versus NG-PON2: Which one will win In: Proceedings of European Conference and Exhibition on Optical Communication. 2012, Tu.4.B

[4] Harstead E, van Veen D, Vetter P. Technologies for NGPON2: Why I think 40 G TDM PON (XLG-PON) is the clear winner. In: Proceedings of Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference. 2012

[5] Yu J J, Jia Z S, Ji P N, Wang T. 40-Gb/s wavelength-divisionmultiplexing passive optical network with centralized lightwave source. In: Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference. 2008, OTuH8

[6] Luo Y, Zhou X, Effenberger F, Yan X, Peng G, Qian Y, Ma Y. Time and wavelength division multiplexed passive optical network (TWDM-PON) for next generation pon stage 2 (NG-PON2). Journal of Lightwave Technology, 2012, (99): 1-6

[7] Liu B, Zhang L J, Xin X J, Yu J J. Constellation-masked secure communication technique for OFDM-PON. Optics Express, 2012, 20(22): 25161-25168

[8] Shin D J, Keh Y C, Kwon J W, Lee E H, Lee J K, Park M K, Park J W, Oh Y K, Kim SW, Yun I K, Shin H C, Heo D, Lee J S, Shin H S, Kim H S, Park S B, Jung D K, Hwang S, Oh Y J, Jang D H, Shim C S. Low-cost WDM-PON with colorless bidirectional transceivers. Journal of Lightwave Technology, 2006, 24(1): 158-165

[9] Lang R. Injection locking properties of a semiconductor laser. IEEE Journal of Quantum Electronics, 1982, 18(6): 976-983

[10] Spiekman L. Active devices in passive optical networks. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.4

[11] Attygalle M,Wen Y J, Shankar J, Nirmalathas A, Cheng X,Wang Y. Increasing upstream capacity in TDM-PON with multiplewavelength transmission using Fabry-Perot laser diodes. Optics Express, 2007, 15(16): 10247-10252

[12] Chan L, Chan C, Tong D, Tong F, Chen L. Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator for WDM access networks. Electronics Letters, 2002, 38(1): 43-45

[13] Zhu M, Xiao S, Zhou Z, Guo W, Yi L, Bi M, Hu W, Geller B. An upstream multi-wavelength shared PON based on tunable selfseeding Fabry-Pérot laser diode for upstream capacity upgrade and wavelength multiplexing. Optics Express, 2011, 19(9): 8000-8010

[14] Lee W, Park M Y, Cho S H, Lee J, Kim C, Jeong G, Kim B W. Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers. IEEE Photonics Technology Letters, 2005, 17(11): 2460-2462

[15] Li Z, Yi L, Zhang Y, Xiao S, Hu W. Upstream multi-wavelength shared TDM-PON using RSOA based directly modulated tunable fiber ring laser. In: Proceedings of Communications and Photonics Conference and Exhibition. 2011, 1-6

[16] Cho K Y, Lee Y J, Choi H Y, Murakami A, Agata A, Takushima Y, Chung Y C. Effects of reflection in RSOA-based WDM PON utilizing remodulation technique. Journal of Lightwave Technology, 2009, 27(10): 1286-1295

[17] Lin Z R, Liu C K, Jhang Y J, Keiser G. Tunable directly modulated fiber ring laser using a reflective semiconductor optical amplifier for WDM access networks. Optics Express, 2010, 18(17): 17610-17619

[18] de Valicourt G, Make D, Fortin C, Enard A, Van Dijk F, Brenot R. 10 Gbit/s modulation of reflective SOA without any electronic processing. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC/NFOEC) and the National Fiber Optic Engineers Conference. 2011, OThT2

[19] Cho K, Choi B, Takushima Y, Chung Y. 25.78-Gb/s operation of RSOA for next-generation optical access networks. IEEE Photonics Technology Letters, 2011, 23(8): 495-497

[20] Cho K Y, Takushima Y, Chung Y C. Demonstration of 11-Gb/s, 20-km reach WDM PON using directly-modulated RSOA with 4-ary PAM signal. In: Proceedings of Optical Fiber Communication Conference. 2010, OWG1

[21] Omella M, Polo V, Lazaro J, Schrenk B, Prat J. 10 Gb/s RSOA transmission by direct duobinary modulation. In: Proceedings of 34th European Conference on Optical Communication. 2008, Tu.3.E.4

[22] Kim H. 10-Gb/s operation of RSOA using a delay interferometer. IEEE Photonics Technology Letters ,2010, 22(18): 1379-1381

[23] Girault G, Bramerie L, Vaudel O, Lobo S, Besnard P, Joindot M, Simon J C, Kazmierski C, Dupuis N, Garreau A. 10 Gbit/s PON demonstration using a REAM-SOA in a bidirectional fiber configuration up to 25 km SMF. In: Proceedings of 34th European Conference on Optical Communication. 2008, P.6.08

[24] Papagiannakis I, Klonidis D, Birbas A N, Kikidis J, Tomkos I. Performance improvement of low-cost 2.5-Gb/s rated DML sources operated at 10 Gb/s. IEEE Photonics Technology Letters, 2008, 20(23): 1983-1985

[25] Liu Y R, Davies A R, Ingham J D, Penty R V, White I H. Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems. IEEE Photonics Technology Letters, 2005, 17(10): 2026-2028

[26] Ossieur P, Antony C, Naughton A, Clarke A M, Krimmel H G, Yin X, Qiu X Z, Ford C, Borghesani A, Moodie D, Poustie A, Wyatt R, Harmon B, Lealman I, Maxwell G, Rogers D, Smith D W, Smolorz S, Rohde H, Nesset D, Davey R P, Townsend P D. Demonstration of a 32×512 Split, 100 km reach, 2×32×10 Gb/s hybrid DWDMTDMA PON using tunable external cavity lasers in the ONUs. Journal of Lightwave Technology, 2011, 29(24): 3705-3718

[27] Wei F, Sun Y, Chen D, Xin G, Ye Q, Cai H, Qu R. Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photonics Technology Letters, 2011, 23(5): 296-298

[28] Zheng J, Ge C, Wagner C, Meng L, Cunningham B, Eden J. Optically tunable ring external-cavity laser. In: Proceedings of Photonics Conference (PHO). 2011, 644-645

[29] Hu T,WangW J, Qiu C, Yu P, Qiu H Y, Zhao Y, Jiang X Q, Yang J Y. Thermally tunable filters based on third-order microring resonators for WDM applications. IEEE Photonics Technology Letters, 2012, 24(6): 524-526

[30] Iodice M, Cocorullo G, Della Corte F, Rendina I. Silicon Fabry-Perot filter for WDM systems channels monitoring. Optics Communications, 2000, 183(5-6): 415-418

[31] Domash L, Wu M, Nemchuk N, Ma E. Tunable and switchable multiple-cavity thin film filters. Journal of Lightwave Technology, 2004, 22(1): 126-135

[32] Lequime M, Parmentier R, Lemarchand F, Amra C. Toward tunable thin-film filters for wavelength division multiplexing applications. Applied Optics, 2002, 41(16): 3277-3284

[33] Goh C S, Set S Y, Kikuchi K.Widely tunable optical filters based on fiber Bragg gratings. IEEE Photonics Technology Letters, 2002, 14(9): 1306-1308

[34] Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Compatible TDM/WDM PON using a single tunable optical filter for both downstream wavelength selection and upstream wavelength generation. IEEE Photonics Technology Letters, 2012, 24(10): 797-799

[35] Yi L, Li Z, Dong Y, Xiao S, Hu W. 80/10 Gb/s downstream/upstream capacity multi-wavelength TDM-PON. In: Proceedings of 8th International Symposium on Communication Systems Networks & Digital Signal Processing (CSNDSP). 2012, 1-4

[36] Li Z, Yi L, Zhang Y, Dong Y, Xiao S, Hu W. Mitigation of reflection-induced crosstalk in multi-wavelength TDM-PON using spectral red-shifted, tunable fiber ring laser based upstream source. In: Proceedings of Optical Fiber Communication Conference. 2012, OM2I.2

[37] Yi L, Li Z, Dong Y, Xiao S, Chen J, Hu W. Upstream capacity upgrade in TDM-PON using RSOA based tunable fiber ring laser. Optics Express, 2012, 20(9): 10416-10425

[38] Li Z, Yi L, Bi M, Li J, He H, Yang X , Hu W. Experimental demonstration of a symmetric 40-Gb/s TWDM-PON. In: Proceedings of Optical Fiber Communication Conference. 2013, NTh4F.3 (accepted)

Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Frontiers of Optoelectronics, 2013, 6(1): 46. Zhengxuan LI, Lilin YI, Weisheng HU. Key technologies and system proposals of TWDM-PON[J]. Frontiers of Optoelectronics, 2013, 6(1): 46.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!