光学技术, 2023, 49 (6): 728, 网络出版: 2023-12-05  

有机气溶胶的微脉冲荧光激光雷达水平近场探测研究

AHorizontal near-field detection of organic aerosols by micro-pulse fluorescence lidar
作者单位
1 北京理工大学 光电学院 光电成像技术与系统教育部重点实验室, 北京 100081
2 安徽科创中光科技股份有限公司, 安徽 合肥 230031
3 中国气象局气象探测中心, 北京 100081
摘要
微脉冲激光雷达技术是大气气溶胶观测的重要手段, 当使用紫外激光光源时, 可利用激光诱导荧光信号探测环境中的有机气溶胶。建立了微脉冲荧光激光雷达水平探测有机气溶胶的仿真模型, 并对回波光子数及信噪比进行了数值仿真计算。根据仿真结果设计并搭建了一台微脉冲荧光激光雷达, 通过对系统进行几何重叠因子标定, 减小了近场荧光回波信号的强度误差。以营养肉汤溶液为气溶胶样本对该激光雷达系统开展了测试实验, 实验表明该MPFL系统空间分辨率为7.5m, 实验最大探测距离达到200m。同时与另一台低重频高脉冲能量的荧光激光雷达进行了对比实验, 对比结果显示, 两型激光雷达接收的荧光信号强度变化趋势具有很好的一致性, 相关系数达82%以上。在相同的累加时间下, MPFL荧光信号变化率矩阵标准误差小于0.02%, 具有更好的抗干扰性能, 能够实现对有机气溶胶准确探测, 验证了系统有效性和实用性。
Abstract
Micro-pulse Lidar (MPL) technology is an important means of atmospheric aerosol observation, laser-induced fluorescence signals can be used to detect organic aerosols in the environment when using ultraviolet laser light sources. A simulation model for the horizontal detection of organic aerosols by micro-pulse fluorescence lidar (MPFL) is established, and the number of echo photons and signal-to-noise ratio are numerically calculated. According to the simulation results, a micro-pulse fluorescence lidar was designed and built, and the intensity error of the near-field fluorescence echo signal was reduced by calibrating the geometric overlap factor of the system. The test experiment of the lidar system was carried out using the nutritional broth solution as the aerosol sample, and the experiments showed that the spatial resolution of the MPFL system was 7.5m, and the maximum detection distance of the experiment reached 200m. At the same time, a comparative experiment was carried out with another fluorescence lidar with low repetition frequency and high pulse energy, and the comparison results showed that the trend of fluorescence signal intensity received by the two types of lidar had good consistency, and the correlation coefficient was more than 82%. Under the same accumulation time, the standard error of the MPFL fluorescence signal change rate matrix was less than 0.02%, which had better anti-interference performance, and could achieve accurate detection of organic aerosols, which verified the effectiveness and practicality of the system.
参考文献

[1] Yongle P. Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2015,150:12-35.

[2] C Phlker, J A Huffman, J D Frster, et al. Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen[J]. Atmospheric Measurement Techniques,2013,6(12):3369-3392.

[3] Veselovskii I, Hu Q, Goloub P, et al. Mie–Raman–fluorescence lidar observations of aerosols during pollen season in the north of France[J]. Atmospheric Measurement Techniques,2021,14(7):4773-4786.

[4] Veselovskii I, Hu Q, Goloub P, et al. Combined use of Mie-Raman and fluorescence lidar observations for improving aerosol characterization: feasibility experiment[J]. Atmospheric Measurement Techniques,2020,13(12):6691-6701.

[5] Baowei L, Siying C, Yinchao Z, et al. Fluorescent aerosol observation in the lower atmosphere with an integrated fluorescence-Mie lidar[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,227:211-218.

[6] James D S. Micro pulse lidar[J]. IEEE Trans. Geoscience and Remote Sensing,1993,31(1):48-55.

[7] T A Berkoff, E J Welton, J R Campbell, et al. Investigation of overlap correction techniques for the micro-pulse lidar NETwork (MPLNET)[C]∥2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France:IGARSS,2003:4395-4397.

[8] Toledo D, Cordoba J C, Antonio A J, et al. Estimation of the atmospheric boundary layer height during different atmospheric conditions: a comparison on reliability of several methods applied to lidar measurements[J]. International Journal of Remote Sensing,2017,38(11/12):3203-3218.

[9] P K Dubey, S L Jain, B C Arya, et al. Indigenous design and development of a micro-pulse lidar for atmospheric studies[J]. International Journal of Remote Sensing,2011,32(2):337-351.

[10] James R C, Erica K D, Simone L, et al. Cirrus cloud top-of-the-atmosphere net daytime forcing in the alaskan subarctic from ground-based MPLNET monitoring[J]. Journal of Applied Meteorology and Climatology,2021,60(1):51-63.

[11] Carmen C J, Michaёl S, Albert A, et al. Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements[J].Atmospheric Measurement Techniques,2018,11(8):4775-4795.

[12] 张寅超, 马扬程, 陈思颖, 等. 一种水平探测荧光激光雷达系统常数标定方法[J].光学学报,2022,42(18):174-182.

[13] Rao Z, He T, Hua D, et al. Preliminary measurements of fluorescent aerosol number concentrations using a laser-induced fluorescence lidar.[J]. Applied Optics,2018,57(25):7211-7215.

[14] 吴晗平. 红外辐射大气透过率的工程理论计算方法研究[J].光学精密工程,1998,(4):35-43.

[15] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社,2012:326-330.

[16] Saito Y, Ichihara K, Morishita K, et al. Remote detection of the fluorescence spectrum of natural pollens floating in the atmosphere using a Laser-Induced-Fluorescence Spectrum (LIFS) lidar[J]. Remote Sensing,2018,10(10):1533.

[17] Wei G, Feiyue M, Jun L. OFLID: Simple method of overlap factor calculation with laser intensity distribution for biaxial lidar[J]. Optics Communications,2011,284(12):2966-2971.

[18] Klett J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics,1981,20(2):211-220.

朱瑜, 陈和, 陈思颖, 张寅超, 郭磐, 曹开法, 陈贝, 安涛, 游钧洁. 有机气溶胶的微脉冲荧光激光雷达水平近场探测研究[J]. 光学技术, 2023, 49(6): 728. 朱瑜, 陈和, 陈思颖, 张寅超, 郭磐, 曹开法, 陈贝, 安涛, 游钧洁. AHorizontal near-field detection of organic aerosols by micro-pulse fluorescence lidar[J]. Optical Technique, 2023, 49(6): 728.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!