中国激光, 2016, 43 (8): 0806003, 网络出版: 2016-08-10   

星地相干光通信中的自适应光学系统带宽研究 下载: 709次

Bandwidth of Adaptive Optics System in Satellite-Ground Coherent Laser Communication
作者单位
1 中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
针对星地相干激光通信,研究了自适应光学的系统带宽对通信性能的影响。对于特定校正阶数的自适应光学系统,得到了系统需求的控制带宽,并对比了同步轨道(GEO)卫星对地链路和低地轨道(LEO)卫星对地链路。结果显示低轨卫星链路所需的控制带宽远大于同步卫星链路,原因来自于低轨卫星和地面站的高速相对运动产生的垂直链路风速,同时低轨卫星对地链路对自适应光学的带宽需求和天顶角是成反比关系的。分析了低轨卫星对地相干激光通信链路混频效率和自适应系统带宽以及校正阶数的关系,结果表明,200 Hz的闭环带宽完全可以满足需求,当达到100 Hz带宽之后,增加变形镜单元数对混频效率的提升更为有效。
Abstract
The influence of system bandwidth of adaptive optics system to communication performance is investigated for satellite-ground coherent opticscommunication. For a certain modes corrected by adaptive optics, the required servo bandwidth is obtained and the low earth orbit (LEO) satellite-ground laser links are compared with the geosynchronous (GEO) satellite-ground laser links. The results show that the LEO links require larger servo bandwidth than the GEO links. This is due to the high speed relative movement between the LEO and the ground station can generate vertical wind speed link. And the bandwidth requirement of adaptive optics system for LEO-ground link and zenith angle are inversely related. The relationship between the mixing efficiency LEO-ground coherent laser communication link, the adaptive optics system servo bandwidth and corrected modes is also studied. The results show that 200 Hz of close-loop bandwidth can meet the requirement, and increasing the number of actuators on deformable mirror is a more effective way to improve the mixing efficiency when the bandwidth reaches 100 Hz.
参考文献

[1] Smutny B, Kaempfner H, Muehlnikel G, et al. 5.6 Gbps optical inter-satellite communication link[J]. Proc SPIE, 2009, 7199: 719906.

    Smutny B, Kaempfner H, Muehlnikel G, et al. 5.6 Gbps optical inter-satellite communication link[J]. Proc SPIE, 2009, 7199: 719906.

[2] 宋婷婷, 马晶, 谭立英, 等. 美国月球激光通信演示验证——实验设计和后续发展[J]. 激光与光电子学进展, 2014, 51(4): 040004.

    宋婷婷, 马晶, 谭立英, 等. 美国月球激光通信演示验证——实验设计和后续发展[J]. 激光与光电子学进展, 2014, 51(4): 040004.

    Song Tingting, Ma Jing, Tan Liying, et al. Experiment design and development of the lunar laser communication demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040004.

    Song Tingting, Ma Jing, Tan Liying, et al. Experiment design and development of the lunar laser communication demonstration in USA[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040004.

[3] Sodnik Z, Armengola J P, Czichyb R H, et al. Adaptive optics and ESA′s optical ground station[J]. Proc SPIE, 2009, 7464: 746406.

    Sodnik Z, Armengola J P, Czichyb R H, et al. Adaptive optics and ESA′s optical ground station[J]. Proc SPIE, 2009, 7464: 746406.

[4] 马小平, 孙建锋, 侯培培, 等. 星地激光通信中克服大气湍流效应研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120002.

    马小平, 孙建锋, 侯培培, 等. 星地激光通信中克服大气湍流效应研究进展[J]. 激光与光电子学进展, 2014, 51(12): 120002.

    Ma Xiaoping, Sun Jianfeng, Hou Peipei, et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002.

    Ma Xiaoping, Sun Jianfeng, Hou Peipei, et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120002.

[5] 娄岩, 赵义武, 陈纯毅. 星地链路激光通信地面站址选择及大气影响研究[J]. 激光与光电子学进展, 2014, 51(12): 120602.

    娄岩, 赵义武, 陈纯毅. 星地链路激光通信地面站址选择及大气影响研究[J]. 激光与光电子学进展, 2014, 51(12): 120602.

    Lou Yan, Zhao Yiwu, Chen Chunyi. Atmosphere impact and ground station selection for satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120602.

    Lou Yan, Zhao Yiwu, Chen Chunyi. Atmosphere impact and ground station selection for satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 2014, 51(12): 120602.

[6] Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems[J]. Proc SPIE, 2002, 4821: 453528.

    Wilks S C, Morris J R, Brase J M, et al. Modeling of adaptive optics-based free-space communications systems[J]. Proc SPIE, 2002, 4821: 453528.

[7] 罗文, 耿超, 李新阳. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34(6): 0606001.

    罗文, 耿超, 李新阳. 大气湍流像差对单模光纤耦合效率的影响分析及实验研究[J]. 光学学报, 2014, 34(6): 0606001.

    Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

    Luo Wen, Geng Chao, Li Xinyang. Simulation and experimental study of single-mode fiber coupling efficiency affected by atmospheric turbulence aberration[J]. Acta Optica Sinica, 2014, 34(6): 0606001.

[8] Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Optics Express, 2008, 16(18): 14151-14162.

    Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Optics Express, 2008, 16(18): 14151-14162.

[9] Zuo L, Dang A, Ren Y, et al. Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence[J].Optics Communication, 2011, 284(6): 1491-1495.

    Zuo L, Dang A, Ren Y, et al. Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence[J].Optics Communication, 2011, 284(6): 1491-1495.

[10] Liu C, Chen S, Li X, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 2014, 22(13): 15554-15563.

    Liu C, Chen S, Li X, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J]. Optics Express, 2014, 22(13): 15554-15563.

[11] Li J, Zhang Z, Gao J, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communication, 2016, 359: 254-260.

    Li J, Zhang Z, Gao J, et al. Bandwidth of adaptive optics system in atmospheric coherent laser communication[J]. Optics Communication, 2016, 359: 254-260.

[12] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. J Opt Soc Am, 1977, 67(3): 391-393.

    Greenwood D P. Bandwidth specification for adaptive optics systems[J]. J Opt Soc Am, 1977, 67(3): 391-393.

[13] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005, 481-492.

    Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005, 481-492.

[14] Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.

    Noll R J. Zernike polynomials and atmospheric turbulence[J]. J Opt Soc Am, 1976, 66(3): 207-211.

李佳蔚, 陈卫标. 星地相干光通信中的自适应光学系统带宽研究[J]. 中国激光, 2016, 43(8): 0806003. Li Jiawei, Chen Weibiao. Bandwidth of Adaptive Optics System in Satellite-Ground Coherent Laser Communication[J]. Chinese Journal of Lasers, 2016, 43(8): 0806003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!