光学学报, 2013, 33 (3): 0323005, 网络出版: 2013-02-06   

荧光亚单层结合磷光掺杂层制备白色有机发光器件

Fabrications of White Organic Light-Emitting Device Based on Fluorescent Sub-Monolayer Combine with Phosphorescent Doping Layer
作者单位
泉州师范学院物理与信息工程学院, 福建 泉州 362000
摘要
以4,4′-二(2,2)-二苯乙烯基-1,1联苯(DPVBi)为蓝光发光层,将荧光材料2-(4-二苯基)-5-(4-叔丁)(DCM2)以亚单层的方式插入DPVBi后作为红光发光层,将绿光三(2-苯基吡啶)铱磷光染料掺入到母体4,4′-N,N′-dicarbazole-biphenyl(CBP)中作为绿光发光层,制备了一种荧光与磷光相结合的白色有机电致发光器件(WOLED)。器件结构为ITO/NPB(40 nm )/DPVBi (8 nm)/DCM2(d)/CBPIr(ppy)3 8% (15 nm)/4,7-diphenyl-1,10-phenanthroline(BPhen) (60 nm)/LiF (1 nm)/Al (200 nm),通过改变亚单层的厚度,得到了高效率的WOLED,当亚单层厚度为0.05 nm时,器件的最大电流效率可达7.60 cd/A,当电压为13 V时亮度达15420 cd/m2,当电压从4 V变化到12 V时,色坐标从(0.34,0.44)变化到(0.27,0.33)。为了进一步提高器件的性能,在红光和绿光发光层间加入激子阻挡层BPhen,当其厚度为5 nm时,电流效率达到10.56 cd/A,亮度在电压为13 V时达到25960 cd/m2,当电压从4 V变化到12 V时,色坐标从(0.34,0.44)变化到(0.28,0.36),处于白光区。结果表明,加入激子阻挡层BPhen后,器件的光谱和色坐标仍相对稳定,器件性能得到提高,获得了色稳定性较好的白光器件。
Abstract
White organic light-emitting device (WOLED) based on fluorescent sub-monolayer combining with phosphorescent doping layer is fabricated, in which fluorescent material 4,4′-bis(2,2′-diphenyl vinyl)-1,1′-biphenyl (DPVBi) acts as blue emitter layer, sub-monolayer [2-methyl-6- [2-(2, 3, 6, 7-tetrahydro-1H, 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2) inserted in the blue emitter layer acts as red emitter layer, fac tris (2-phenylpyridine) iridium [Ir(ppy)3] doped into 4,4′-N,N′-dicarbazole-biphenyl(CBP) host acts as green emitter layer, respectively. The structure of device is ITO / NPB(40 nm )/DPVBi (8 nm) /DCM2(d)/CBPIr(ppy)3 8% (15 nm)/4, 7 -diphenyl-1, 10-phenanthroline (BPhen) (60 nm)/LiF (1 nm)/Al (200 nm). The device performance is controlled by varying the thickness of DCM2. The maximum current efficiency and maximum luminance of the device with the DCM2 thickness of 0.05 nm DCM2 are 7.60 cd/A, 15 420 cd/m2, respectively. The commission international eclairage (CIE) color coordinates of the device vary from (0.34, 0.44) at 4 V to (0.27, 0.33) at 12 V. In order to further improve the performance of WOLED, the BPhen is used as exciton block-layer to the WOLED, the maximum current efficiency and maximum luminance of the device with BPhen thickness of 5 nm are 10.56 cd/A at 4 V, 25960 cd/m2 at 13 V, respectively. The CIE color coordinates of the device vary from (0.34, 0.44) at 4 V to (0.28, 0.36) at 12 V that are general within the white region. The results show that, compared with that of without exciton block- layer, the devices employing exciton block-layer yield higher device performance as well as comparatively stable electroluminescence spectra and CIE color coordinates results stable white emission.
参考文献

[1] A. R. Duggal, J. J. Shiang, C. M. Heller et al.. Organic light-emitting devices for illumination quality white light [J]. Appl. Phys. Lett., 2002, 80(19): 3470~3472

[2] Y. S. Huang, J. H. Jou, W. K. Weng et al.. High-efficiency white organic light-emitting devices with dual doped structure [J]. Appl. Phys. Lett., 2002, 80(15): 2782~2784

[3] T. Tsuji, S. Naka, H. Okada et al.. Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion [J]. Appl. Phys. Lett., 2002, 81(15): 3329~3331

[4] J. Feng, F. Li, W. B. Gao et al.. White light emission from exciplex using tris-(8-hydroxyquinoline) aluminum as chromaticity-tuning layer [J]. Appl. Phys. Lett., 2001, 78(25): 3947~3949

[5] M. A. Baldo, D. F. O′Brien, M. E. Thompson et al.. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Phys. Rev. B, 1999, 60(20): 14422~14428

[6] M. A. Baldo, D. F. O′Brien, Y. You et al.. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395(6698): 151~154

[7] Wenfa Xie, Yi Zhao, Chuannan Li et al.. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer [J]. Semicond. Sci. Technol., 2005, 20(3): 326~332

[8] M. A. Baldo, S. Lamansky, P. E. Burrows et al.. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1): 4~6

[9] 张春玉, 肖力光, 陆景彬 等. 不同厚度红色有机微腔电致发光器件性能研究[J]. 光学学报, 2010, 30(6): 1788~1791

    Zhang Chunyu, Xiao Liguang, Lu Jingbin et al.. Study on luminescence properties of red color microcavity organic light emitting device with different thicknesses [J]. Acta Optica Sinica, 2010, 30(6): 1788~1791

[10] 连加荣, 周翔. 利用LiF空穴阻挡/激子限制层提高有机电致发光器件效率[J]. 光学学报, 2010, 30(5): 1469~1472

    Lian Jiarong, Zhou Xiang. Improved efficiency in organic light-emitting devices with LiF hole blocking and exciton confining layers [J]. Acta Optica Sinica, 2010, 30(5): 1469~1472

[11] 申溯, 浦东林, 胡进 等. 一种基于空间光调制器的微透镜阵列制备技术[J]. 中国激光, 2012, 39(3): 0316003

    Shen Su, Pu Donglin, Hu Jin et al.. Fabrication of microlens arrars based on spatial light modulator [J]. Chinese J. Lasers, 2012, 39(3): 0316003

[12] M. A. Baldo, M. E. Thompson, S. R. Forrest. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature, 2000, 403(6771): 750~753

杨惠山. 荧光亚单层结合磷光掺杂层制备白色有机发光器件[J]. 光学学报, 2013, 33(3): 0323005. Yang Huishan. Fabrications of White Organic Light-Emitting Device Based on Fluorescent Sub-Monolayer Combine with Phosphorescent Doping Layer[J]. Acta Optica Sinica, 2013, 33(3): 0323005.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!