红外与激光工程, 2018, 47 (11): 1117006, 网络出版: 2019-01-10   

迈克尔逊干涉法精确测量太赫兹频谱及目标速度

Accurate measurement of terahertz spectrum and target velocity based on Michelson interferometry
作者单位
1 天津大学 精密仪器与光电子工程学院 激光与光电子研究所, 天津 300072
2 光电信息技术教育部重点实验室(天津大学), 天津 300072
3 北京航天计量测试技术研究所, 北京 100076
摘要
搭建了一套迈克尔逊干涉仪, 对CO2激光的9P36和9R10谱线泵浦CH3OH气体所产生的频率分别为2.52 THz和3.11 THz的太赫兹激光器输出频谱进行了精细测量。测量系统频率分辨率约为1 GHz, 测量结果显示CO2激光泵浦的太赫兹源为单色源并具有极窄的线宽, 波长与激光器标称值进行对比具有很好的一致性。基于这套系统实现了对干涉仪动臂目标的运动速度准确测量, 提出了两种分别适用于匀速运动和变速运动情况下的速度反演方法, 反演结果与设定值均相符。结论表明, 迈克尔逊干涉仪不但可以精确测量太赫兹波源的频谱, 同时配合单色太赫兹源可以准确测量目标速度, 为太赫兹波段光谱、成像等领域的应用奠定基础。
Abstract
A Michelson interferometer was constructed to measure the spectra generated by a terahertz (THz) gas laser pumped by a CO2 laser. The hyperfine spectra at 2.52 THz and 3.11 THz generated in CH3OH gas pumped by the 9P36 and 9R10 laser lines of the CO2 laser was measured with the frequency resolution of around 1 GHz. The measurement results showed that the THz laser was monochromatic and had very narrow linewidth. The measured wavelength was consistent with the nominal value. Velocity measurement of target on the translation mirror was also performed based on this interferometer. Two methods for acquiring velocity were proposed, demonstrating good accordance with the set values for both fixed and variable velocities. It is concluded that the Michelson interferometer could be used to accurately measure the spectrum of a THz source, and the velocity measurement was also possible with the help of a monochromatic THz source, laying the basis for THz applications like spectroscopy, imaging, etc.
参考文献

[1] Lee Y S. Principles of Terahertz Science and Technology [M]. Springer Science & Business Media, 2009.

[2] 姚建铨, 钟凯, 徐德刚. 太赫兹空间应用研究与展望[J]. 空间电子技术, 2013, 10(2): 1-16.

    Yao Jianquan, Zhong Kai, Xu Degang. Study and outlook of terahertz space applications [J]. Space Electronic Technology, 2013, 10(2): 1-16. (in Chinese)

[3] 郭力菡, 王新柯, 张岩. 生物组织的太赫兹数字全息成像[J]. 光学 精密工程, 2017, 25(3): 611-615.

    Guo Lihan, Wang Xinke, Zhang Yan. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615. (in Chinese)

[4] 解琪, 杨鸿儒, 李宏光, 等. 基于太赫兹时域光谱系统的爆炸物识别[J]. 光学 精密工程, 2016, 24(10): 2392-2399.

    Xie Qi, Yang Hongru, Li Hongguang, et al. Explosive identification based on terahertz time-domain spectral system [J]. Optics and Precision Engineering, 2016, 24(10): 2392-2399. (in Chinese)

[5] 胡伟东, 季金佳, 刘瑞婷, 等. 太赫兹大气遥感技术[J]. 中国光学, 2017, 10(5): 656-665.

    Hu Weidong, ji Jinjia, Liu Ruiting, et al. Terahertz atmosphere remote sensing [J]. Chinese Optics, 2017, 10(5): 656-665. (in Chinese)

[6] 丁丽, 丁茜, 叶阳阳, 等. 室内人体隐匿物被动太赫兹成像研究进展[J]. 中国光学, 2017, 10(1): 114-121.

    Ding Li, Ding Xi, Ye Yangyang, et al. Overview of passive terahertz imaging systems for indoor concealed detection [J]. Chinese Optics, 2017, 10(1): 114-121. (in Chinese)

[7] Zhong K, Shi W, Xu D, et al. Optically pumped terahertz sources [J]. Science China Technological Sciences, 2017, 60(12): 1801-1818.

[8] 王茂榕, 钟凯, 刘楚, 等. 基于太赫兹气体激光器的3.11 THz标准体雷达散射截面测量[J]. 红外与激光工程, 2018, 47(2): 0225001.

    Wang Maorong, Zhong Kai, Liu Chu, et al. Radar cross section measurement of standard targets at 3.11 THz based on terahertz gas lasers [J]. Infrared and Laser Engineering, 2018, 47(2): 0225001. (in Chinese)

[9] 樊长坤, 李琦, 周毅, 等. 四种粗糙度铝板的2.52太赫兹后向散射测量研究[J]. 激光与光电子学进展, 2016, 35(11): 111201.

    Fan Changkun, Li Qi, Zhou Yi, et al. Measurement investigation of 2.52 terahertz back scattering in aluminium plates with four kinds of roughness[J]. Laser & Optoelectronics Progress, 2016, 35(11): 111201. (in Chinese)

[10] 李琦, 杨永发, 胡佳琦. 一种用于太赫兹共焦扫描图像复原的复合算法[J]. 红外与激光工程, 2015, 44(1): 321-326.

    Li Qi, Yang Yongfa, Hu Jiaqi. A composite algorithm used for terahertz confocal scanning image restoration[J]. Infrared and Laser Engineering, 2015, 44(1): 321-326. (in Chinese)

[11] 韩晓惠, 崔洪亮, 张瑾, 等. 太赫兹时域光谱技术用于准确快速地提取薄片的光学参数[J]. 红外与激光工程, 2017, 46(5): 0525003.

    Han Xiaohui, Cui Hongliang, Zhang Jin, et al. Accurate and rapid extraction of optical parameters for thin plates with terahertz time domain spectroscopy technology [J]. Infrared and Laser Engineering, 2017, 46(5): 0525003. (in Chinese)

[12] 张旭涛, 孙金海, 蔡禾, 等. 太赫兹时域光谱系统静区测试及数据处理[J]. 红外与激光工程, 2016, 45(11): 1125003.

    Zhang Xutao, Sun Jinhai, Cai He, et al. Quiet zone measurements and data processing of THz-TDS experiment system [J]. Infrared and Laser Engineering, 2016, 45(11): 1125003. (in Chinese)

[13] Wang M R, Zhong K, Liu C, et al. Optical coefficients extraction from terahertz time-domain transmission spectra based on multibeam interference principle [J]. Optical Engineering, 2017, 56(4): 044101.

[14] Stone M R, Naftaly M, Miles R E, et al. Generation of continuous-wave terahertz radiation using a two-mode titanium sapphire laser containing an intracavity Fabry-Perot etalon[J]. Journal of Applied Physics, 2005, 97(10): 103108.

[15] Liu W, Wu D, Wang Y, et al. Terahertz frequency measurement of far-infrared laser with an improvement of Martin–Puplett interferometer [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 614(2): 313-318.

[16] Zuo Z G, Ling F R, Wang P, et al. Hyperfine spectrum measurement of an optically pumped far-infrared laser with a Michelson interferometer[J]. Laser Physics Letters, 2013, 10(5): 055004.

刘楚, 钟凯, 史杰, 靳硕, 葛萌, 李吉宁, 徐德刚, 姚建铨. 迈克尔逊干涉法精确测量太赫兹频谱及目标速度[J]. 红外与激光工程, 2018, 47(11): 1117006. Liu Chu, Zhong Kai, Shi Jie, Jin Shuo, Ge Meng, Li Jining, Xu Degang, Yao Jianquan. Accurate measurement of terahertz spectrum and target velocity based on Michelson interferometry[J]. Infrared and Laser Engineering, 2018, 47(11): 1117006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!