光学学报, 2017, 37 (4): 0414002, 网络出版: 2017-04-10  

基于半整块谐振腔的426 nm高效倍频光的产生 下载: 537次

Generation of 426 nm High-Efficiency Frequency Doubling Light Based on Semi-Monolithic Resonant Cavity
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
2 山西大学物理电子工程学院, 山西 太原 030006
引用该论文

田剑锋, 左冠华, 张玉驰, 李刚, 张鹏飞, 张天才. 基于半整块谐振腔的426 nm高效倍频光的产生[J]. 光学学报, 2017, 37(4): 0414002.

Tian Jianfeng, Zuo Guanhua, Zhang Yuchi, Li Gang, Zhang Pengfei, Zhang Tiancai. Generation of 426 nm High-Efficiency Frequency Doubling Light Based on Semi-Monolithic Resonant Cavity[J]. Acta Optica Sinica, 2017, 37(4): 0414002.

参考文献

[1] Polzik E S, Carri J, Kimble H J. Spectroscopy with squeezed light[J]. Phys Rev Lett, 1992, 68(20): 3020-3023.

[2] Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage[J]. Science, 1998, 282(5391): 1089-1094.

[3] Ditlbacher H, Lamprecht B, Leitner A, et al. Spectrally coded optical data storage by metal nanoparticles[J]. Opt Lett, 2000, 25(8): 563-565.

[4] Suzuki S, Yonezawa H, Kannari F, et al. 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4[J]. Appl Phys Lett, 2006, 89(6): 061116.

[5] Alnis J, Gustafsson U, Somesfalean G, et al. Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm[J]. Appl Phys Lett, 2000, 76(10): 1234-1236.

[6] Neergaard-Nielsen J S, Nielsen B M, Hettich C, et al. Generation of a superposition of odd photon number states for quantum information networks[J]. Phys Rev Lett, 2006, 97(8): 083604.

[7] 李志秀, 杨文海, 王雅君, 等. 用于795 nm压缩光源的单频激光系统的优化设计[J]. 中国激光, 2015, 42(9): 0902002.

    Li Zhixiu, Yang Wenhai, Wang Yajun, et al. Optimal design of single-frequency laser system for 795 nm squeezed light source[J]. Chinese J Lasers, 2015, 42(9): 0902002.

[8] Zhang T C, Goh K W, Chou C W, et al. Quantum teleportation of light beams[J]. Phys Rev A, 2003, 67(3): 033802.

[9] Hald J, Srensen J L, Schori C, et al. Spin squeezed atoms: A macroscopic entangled ensemble created by light[J]. Phys Rev Lett, 1999, 83(7): 1319-1322.

[10] 赵 阳, 李 烨, 彭 瑜, 等. 用周期极化KTP晶体高效倍频获得稳定461 nm激光[J]. 光学学报, 2009, 29(9): 2473-2478.

    Zhao Yang, Li Ye, Peng Yu, et al. Stable second harmonic generation 461 nm blue radiation by PPKTP crystal[J]. Acta Optica Sinica, 2009, 29(9): 2473-2478.

[11] Eberle T, Steinlechner S, Bauchrowitz J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Phys Rev Lett, 2010, 104(25): 251102.

[12] Appel J, Figueroa E, Korystov D, et al. Quantum memory for squeezed light[J]. Phys Rev Lett, 2008, 100(9): 093602.

[13] Burks S, Ortalo J, Chiummo A, et al. Vacuum squeezed light for atomic memories at the D2 cesium line[J]. Opt Express, 2009, 17(5): 3777-3781.

[14] Li Y, Zhou Z Y, Ding D S, et al. Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity[J]. Chin Opt Lett, 2014, 12(11): 111901.

[15] Polzik E S, Kimble H J. Frequency doubling with KNbO3 in an external cavity[J]. Opt Lett, 1991, 16(18): 1400-1402.

[16] Goudarzi F T, Riis E. Efficient cw high-power frequency doubling in periodically poled KTP[J]. Opt Commun, 2003, 227(4-6): 389-403.

[17] Pizzocaro M, Calonico D, Pastor P C, et al. Efficient frequency doubling at 399 nm[J]. Appl Opt, 2014, 53(16): 3388-3392.

[18] Tian J F, Yang C, Xue J, et al. High-efficiency blue light generation at 426 nm in low pump regime[J]. J Opt, 2016, 18(5): 055506.

[19] Deng X, Zhang J, Zhang Y C, et al. Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4[J]. Opt Express, 2013, 21(22): 25907-25911.

[20] Juwiler I, Arie A. Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity[J]. Appl Opt, 2003, 42(36): 7163-7169.

[21] Klappauf B G, Bidel Y, Wilkowski D, et al. Detailed study of an efficient blue laser source by second-harmonic generation in a semi-monolithic cavity for the cooling of strontium atoms[J]. Appl Opt, 2004, 43(12): 2510-2527.

[22] Ast S, Nia R M, Schnbeck A, et al. High efficiency frequency doubling of continuous-wave laser light[J]. Opt Lett, 2011, 36(17): 3467-3469.

[23] 温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 196-202.

    Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 196-202.

[24] Targat R L, Zondy J J, Lemonde P. 75%-efficiency blue generation from an intracavity PPKTP frequency doubler[J]. Opt Commun, 2005, 247(4-6): 471-481.

[25] Guo S L, Ge Y L, Han Y S, et al. Investigation of optical inhomogeneity of MgO: PPLN crystals for frequency doubling of 1560 nm laser[J]. Opt Commun, 2014, 326: 114-120.

田剑锋, 左冠华, 张玉驰, 李刚, 张鹏飞, 张天才. 基于半整块谐振腔的426 nm高效倍频光的产生[J]. 光学学报, 2017, 37(4): 0414002. Tian Jianfeng, Zuo Guanhua, Zhang Yuchi, Li Gang, Zhang Pengfei, Zhang Tiancai. Generation of 426 nm High-Efficiency Frequency Doubling Light Based on Semi-Monolithic Resonant Cavity[J]. Acta Optica Sinica, 2017, 37(4): 0414002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!