光学学报, 2017, 37 (4): 0414002, 网络出版: 2017-04-10  

基于半整块谐振腔的426 nm高效倍频光的产生 下载: 537次

Generation of 426 nm High-Efficiency Frequency Doubling Light Based on Semi-Monolithic Resonant Cavity
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室极端光学协同创新中心, 山西 太原 030006
2 山西大学物理电子工程学院, 山西 太原 030006
摘要
通过内置周期极化磷酸氧钛钾晶体的半整块谐振腔,采用铯原子D2线的抽运光实现了426 nm的蓝光倍频输出。实验采用了相对松散的聚焦,明显改善了基频光和倍频光吸收诱发的热效应。采用305 mW的模式匹配基频光,获得了117.2 mW的倍频蓝光,倍频过程中最高光-光转化效率达到42%;84.5 mW蓝光在约1 h内的功率起伏为0.48%。结果表明,所提方法可实现倍频光的稳定输出,在量子光学、光与物质相互作用等领域具有广阔的应用前景。
Abstract
The 426 nm blue light frequency doubling output based on the pumping light corresponding to D2 line of cesium atom is realized by the semi-monolithic resonant cavity embedded with a periodically poled potassium titanyl phosphate (PPKTP) crystal. Relatively loose focusing is adopted in experiment, which obviously improves the thermal effect induced by the absorption of fundamental frequency light and frequency doubling light. Frequency doubling blue light with the power of 117.2 mW is obtained based on the mode-matched fundamental frequency light with the power of 305 mW, and the highest optical-optical conversion efficiency in the frequency doubling process is up to 42%. The power fluctuation of blue light with the power of 84.5 mW is 0.48% in about an hour. Results show that the proposed method can realize the stable output of frequency doubling light, and has wide application prospects in the field of quantum optics and the interaction between light and matter.
参考文献

[1] Polzik E S, Carri J, Kimble H J. Spectroscopy with squeezed light[J]. Phys Rev Lett, 1992, 68(20): 3020-3023.

[2] Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage[J]. Science, 1998, 282(5391): 1089-1094.

[3] Ditlbacher H, Lamprecht B, Leitner A, et al. Spectrally coded optical data storage by metal nanoparticles[J]. Opt Lett, 2000, 25(8): 563-565.

[4] Suzuki S, Yonezawa H, Kannari F, et al. 7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4[J]. Appl Phys Lett, 2006, 89(6): 061116.

[5] Alnis J, Gustafsson U, Somesfalean G, et al. Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm[J]. Appl Phys Lett, 2000, 76(10): 1234-1236.

[6] Neergaard-Nielsen J S, Nielsen B M, Hettich C, et al. Generation of a superposition of odd photon number states for quantum information networks[J]. Phys Rev Lett, 2006, 97(8): 083604.

[7] 李志秀, 杨文海, 王雅君, 等. 用于795 nm压缩光源的单频激光系统的优化设计[J]. 中国激光, 2015, 42(9): 0902002.

    Li Zhixiu, Yang Wenhai, Wang Yajun, et al. Optimal design of single-frequency laser system for 795 nm squeezed light source[J]. Chinese J Lasers, 2015, 42(9): 0902002.

[8] Zhang T C, Goh K W, Chou C W, et al. Quantum teleportation of light beams[J]. Phys Rev A, 2003, 67(3): 033802.

[9] Hald J, Srensen J L, Schori C, et al. Spin squeezed atoms: A macroscopic entangled ensemble created by light[J]. Phys Rev Lett, 1999, 83(7): 1319-1322.

[10] 赵 阳, 李 烨, 彭 瑜, 等. 用周期极化KTP晶体高效倍频获得稳定461 nm激光[J]. 光学学报, 2009, 29(9): 2473-2478.

    Zhao Yang, Li Ye, Peng Yu, et al. Stable second harmonic generation 461 nm blue radiation by PPKTP crystal[J]. Acta Optica Sinica, 2009, 29(9): 2473-2478.

[11] Eberle T, Steinlechner S, Bauchrowitz J, et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J]. Phys Rev Lett, 2010, 104(25): 251102.

[12] Appel J, Figueroa E, Korystov D, et al. Quantum memory for squeezed light[J]. Phys Rev Lett, 2008, 100(9): 093602.

[13] Burks S, Ortalo J, Chiummo A, et al. Vacuum squeezed light for atomic memories at the D2 cesium line[J]. Opt Express, 2009, 17(5): 3777-3781.

[14] Li Y, Zhou Z Y, Ding D S, et al. Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity[J]. Chin Opt Lett, 2014, 12(11): 111901.

[15] Polzik E S, Kimble H J. Frequency doubling with KNbO3 in an external cavity[J]. Opt Lett, 1991, 16(18): 1400-1402.

[16] Goudarzi F T, Riis E. Efficient cw high-power frequency doubling in periodically poled KTP[J]. Opt Commun, 2003, 227(4-6): 389-403.

[17] Pizzocaro M, Calonico D, Pastor P C, et al. Efficient frequency doubling at 399 nm[J]. Appl Opt, 2014, 53(16): 3388-3392.

[18] Tian J F, Yang C, Xue J, et al. High-efficiency blue light generation at 426 nm in low pump regime[J]. J Opt, 2016, 18(5): 055506.

[19] Deng X, Zhang J, Zhang Y C, et al. Generation of blue light at 426 nm by frequency doubling with a monolithic periodically poled KTiOPO4[J]. Opt Express, 2013, 21(22): 25907-25911.

[20] Juwiler I, Arie A. Efficient frequency doubling by a phase-compensated crystal in a semimonolithic cavity[J]. Appl Opt, 2003, 42(36): 7163-7169.

[21] Klappauf B G, Bidel Y, Wilkowski D, et al. Detailed study of an efficient blue laser source by second-harmonic generation in a semi-monolithic cavity for the cooling of strontium atoms[J]. Appl Opt, 2004, 43(12): 2510-2527.

[22] Ast S, Nia R M, Schnbeck A, et al. High efficiency frequency doubling of continuous-wave laser light[J]. Opt Lett, 2011, 36(17): 3467-3469.

[23] 温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 196-202.

    Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 196-202.

[24] Targat R L, Zondy J J, Lemonde P. 75%-efficiency blue generation from an intracavity PPKTP frequency doubler[J]. Opt Commun, 2005, 247(4-6): 471-481.

[25] Guo S L, Ge Y L, Han Y S, et al. Investigation of optical inhomogeneity of MgO: PPLN crystals for frequency doubling of 1560 nm laser[J]. Opt Commun, 2014, 326: 114-120.

田剑锋, 左冠华, 张玉驰, 李刚, 张鹏飞, 张天才. 基于半整块谐振腔的426 nm高效倍频光的产生[J]. 光学学报, 2017, 37(4): 0414002. Tian Jianfeng, Zuo Guanhua, Zhang Yuchi, Li Gang, Zhang Pengfei, Zhang Tiancai. Generation of 426 nm High-Efficiency Frequency Doubling Light Based on Semi-Monolithic Resonant Cavity[J]. Acta Optica Sinica, 2017, 37(4): 0414002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!