Matter and Radiation at Extremes, 2017, 2 (5): 243, Published Online: Jan. 17, 2018   

Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility

Author Affiliations
1 Laser Fusion Research Center, China Academy of Engineering Physics, P.O. Box 919-988, Mianyang, 621900, China
2 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China
Abstract
The SG-Ⅲ laser facility (SG-Ⅲ) is the largest laser driver for inertial confinement fusion (ICF) researches in China, which has 48 beamlines and can deliver 180 kJ ultraviolet laser energy in 3 ns. In order to meet the requirements of precise physics experiments, some new functionalities need to be added to SG-Ⅲ and some intrinsic laser performances need upgrade. So at the end of SG-Ⅲ's engineering construction, the 2-year laser performance upgrade project started. This paper will introduce the newly added functionalities and the latest laser performance of SG-Ⅲ. With these function extensions and performance upgrade, SG-Ⅲ is now fully prepared for precise ICF experiments and solidly paves the way towards fusion ignition.
References

[1] M. Dunne, Laser Inertial Fusion Energy (LIFE) e a path to US energy independence, in: Annual Meeting of the Southern States Energy Board, 2012.

[2] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2) (2004) 339-491.

[3] M.D. Rosen, J.D. Lindl, J.D. Kilkenny, Recent results on Nova, J. Fusion Energy 13 (2e3) (1994) 155-166.

[4] T.R. Boehly, R.S. Craxton, T.H. Hinterman, J.H. Kelly, T.J. Kessler, et al., The upgrade to the OMEGA laser system, Rev. Sci. Instrum. 88 (l) (1995) 506e510.

[5] C.A. Haynam, P.J. Wegner, J.M. Auerbach, M.W. Bowers, S.N. Dixit, et al., National Ignition Facility laser performance status, Appl. Opt. 46 (16) (2007) 3276e3303.

[6] National Ignition Campaign Execution Plan, UCRL-AR-213718, NIF- 0111975-AA, Rev. 0, June 2005.

[7] National Ignition Campaign Program Completion Report, LLNL-TR- 637982, September 30, 2012.

[8] J. Ebradt, J.M. Chaput, LMJ on its way to fusion, J. Phys. Conf. Ser. 244 (2010) 032017.

[9] X.T. He, W.Y. Zhang, C.F. Ye, Inertial fusion energy research progress in China, in: 6th Symposium on Current Trends in International Fusion Research: A Review, Washington, D.C., USA, 7e11 March 2005.

[10] Z.Q. Lin, X.M. Deng, D.Y. Fan, S.J. Wang, S.H. Chen, et al., SG-Ⅱ laser elementary research and precision SG-Ⅱ program, Fusion Eng. Des. 44 (1999) 61e66.

[11] P. Li, F. Jing, D.S. Wu, R.C. Zhao, H. Li, et al., Power balance on the SG-Ⅲ prototype facility, Proc. SPIE 8433 (2012) 843317.

[12] W.G. Zheng, X.F.Wei, Q.H. Zhu, F. Jing, D. Hu, et al., Laser performance of the SG-Ⅲ laser facility, High Power Laser Sci. Eng. 4 (2016) e21.

[13] J.D. Moody, B.J. MacGowan, J.E. Rothenberg, R.L. Berger, L. Divol, et al., Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma, Phys. Rev. Lett. 86 (13) (2001) 2810-2813.

[14] G.A. Kyrala, A. Seifter, J.L. Kline, S.R. Goldman, S.H. Batha, et al., Tuning indirect-drive implosions using cone power balance, Phys. Plasmas 18 (7) (2011) 072703.

[15] C.K. Li, F.H. Seguin, J.A. Frenje, S.R. Goldman, S.H. Batha, et al., Effects of nonuniform illumination on implosion asymmetry in directdrive inertial confinement fusion, Phys. Rev. Lett. 92 (20) (2004) 205001.

[16] J. Fuchs, C. Labaune, S. Depierreux, H.A. Baldis, A. Michard, et al., Modification of spatial and temporal gains of stimulated Brillouin and Raman scattering by polarization smoothing, Phys. Rev. Lett. 84 (14) (2000) 3089-3092.

[17] R.M. Malone, J.R. Bower, D.K. Bradley, T.W. Tunnell, Imaging VISAR diagnostic for the National Ignition Facility (NIF), in: SPIE High-speed Photography and Photonics Conference Alexandria, VA, United States, UCRL-CONF-206587, 2004.

[18] R. Zhang, M.Z. Li, J.J. Wang, W. Duan, F. Wang, et al., Experimental research on an arbitrary pulse generation system for imaging VISAR, Opt. Laser Technol. 43 (2011) 179-182.

[19] S.H. Glenzer, B.J. Macgowan, P. Michel, N.B. Meezan, L.J. Suter, et al., Symmetric inertial confinement fusion implosions at ultra-high laser energies, Science 327 (5970) (2010) 1228-1231.

[20] J. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.

[21] M.L. Spaeth, K.R. Manes, M. Bowers, P. Celliers, J.M.D. Nicola, et al., National Ignition Facility laser system performance, Fusion Sci. Technol. 69 (2016) 366-394.

[22] D.X. Hu, J. Dong, D.P. Xu, X. Huang, W. Zhou, et al., Generation and measurement of complex laser pulse shapes in the SG-Ⅲ laser facility, Chin. Opt. Lett. 13 (4) (2015) 041406.

[23] J. N eauport, X. Ribeyre, J. Daurios, D. Valla, M. Lavergne, et al., Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities, Appl. Opt. 42 (23) (2003) 77-82.

[24] S. Skupsky, R.W. Short, T. Kessler, R.S. Craxton, Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl. Phys. 66 (34) (1989) 56-62.

[25] J.E. Rothenberg, Polarization beam smoothing for inertial confinement fusion, J. Appl. Phys. 87 (2000) 3654-3662.

[26] J.R. Murray, J. Ray Smith, R.B. Ehrlich, D.T. Kyrazis, C.E. Thompson, et al., Experimental observation and suppression of transverse stimulated Brillouin scattering in large optical components, J. Opt. Soc. Am. B 6 (12) (1989) 2402-2411.

[27] S.P. Regan, J.A. Marozas, R.S. Craxton, J.H. Kelly, W.R. Donaldson, et al., Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams, J. Opt. Soc. Am. B 22 (5) (2005) 998-1002.

[28] T.R. Boehly, V.A. Smalyuk, D.D. Meyerhofer, J.P. Knauer, D.K. Bradley, et al., Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser, J. Appl. Phys. 85 (1999) 3444-3662.

[29] S.N. Dixit, D. Munro, J.R. Murray, M. Nostrand, P.J. Wegner, et al., Polarization Smoothing on the National Ignition Facility, UCRL-PROC- 215251, Inertial Fusion Science and Applications, 2005.

[30] X.X. Huang, H.T. Jia, W. Zhou, F. Zhang, H. Guo, et al., Experimental demonstration of polarization smoothing in a convergent beam, Appl. Opt. 54 (33) (2015) 9786-9790.

Wanguo Zheng, Xiaofeng Wei, Qihua Zhu, Feng Jing, Dongxia Hu, Xiaodong Yuan, Wanjun Dai, Wei Zhou, Fang Wang, Dangpeng Xu, Xudong Xie, Bin Feng, Zhitao Peng, Liangfu Guo, Yuanbin Chen, Xiongjun Zhang, Lanqin Liu, Donghui Lin, Zhao Dang, Yong Xiang, Rui Zhang, Fang Wang, Huaiting Jia, Xuewei Deng. Laser performance upgrade for precise ICF experiment in SG-Ⅲ laser facility[J]. Matter and Radiation at Extremes, 2017, 2(5): 243.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!