光学学报, 2010, 30 (9): 2513, 网络出版: 2014-05-15   

全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出

Controllable High-Power Supercontinuum Generation in All-Solid Photonic Bandgap Fibers
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
目前产生超连续谱大多采用全内反射光子晶体光纤,光谱宽度达两个倍频程,但无法对其位置和宽度进行主动控制。全固态光子带隙光纤的带隙效应具有光谱滤波功能,通过设计全固态光子带隙光纤的带隙和带隙内色散特性,可产生特定范围内的超连续谱输出,同时色散特性受纤芯直径影响很小,有利于光谱可控的大功率超连续谱产生。根据1.064 μm的抽运脉冲激光的需要,设计了全固态光子带隙光纤,并计算了第一带隙内的色散、损耗及非线性系数等参数。通过与波长有关的损耗将带隙效应引入到广义非线性薛定谔方程中,模拟了飞秒脉冲在全固态光子带隙光纤中传输的时域和频谱演化,得到带隙内超连续谱输出。比较了在有无带隙的情况下,飞秒脉冲的时域和频谱在带隙光纤中随传输距离的演化,分析了带隙效应对超连续谱产生的影响。
Abstract
Recently, total internal reflection photonic crystal fibers are widely used in most supercontinuum generation, but the output spectra cannot be actively controlled. Allsolid photonic bandgap fibers (ASPBGF) with proper bandgap and dispersion can also be used for supercontinuum generation. The scheme is a candidate for controlling the range of supercontinuum generation because ASPBGF can work as a filter, moreover, ASPBGF is in favor of controllable high power supercontinuum generation because the core diameter has little influence on dispersion. The ASPBGF used for supercontinuum generation with a pulse laser at 1.064 μm is designed, and its groupvelocity dispersion, loss and nonlinear coefficient are calculated according to the structure and material parameters. The bandgap is included in the generalized non linear Schrdinger equation (GNLSE) through the loss dependent on wavelengths. The temporal and spectral evolutions of femtosecond pulse in the first bandgap are gained by solving the GNLSE using splitstep Fourier method. The effect of the bandgap on the spectra extension is analyzed by comparing the output with bandgap and the one without bandgap.
参考文献

[1] 王之光,曾志男,李儒新 等. 超连续谱干涉方法测量古依相移[J]. 光学学报, 2007, 27(10): 1905~1908

    Wang Zhiguang, Zeng Zhinan, Li Ruxin. Measurement of Gouy phase shift by supercontinuum spectral interference[J]. Acta Optica Sinica, 2007, 27(10): 1905~1908

[2] Th. Udem, R. Holzwarth, T. W. Hnsch. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233~237

[3] S. A. Diddams, D. J. Jones, J. Ye et al.. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys. Rev. Lett., 2000, 84(22): 5102~5105

[4] I. Hartl, X. D. Li, C. Chudoba et al.. Ultrahigh resolution optical coherence tomography using continuum generation in an airsilica microstructure optical fiber[J]. Opt. Lett., 2001, 26(9): 608~610

[5] H. Takara, T. Ohara, K. Mori et al.. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing[J]. Electron. Lett., 2000, 36(25): 2089~2090

[6] 徐永钊,王子南,张霞 等. 基于微结构光纤的10 GHz超过1100信道的平坦超连续谱光源[J]. 中国激光, 2007, 34(5): 675~679

    Xu Yongzhao, Wang Zinan, Zhang Xia et al.. 10 GHzspaced over 1100 channel flat supercontinuum source generated in a microstructure fiber[J]. Chinese J. Lasers, 2007, 34(5): 675~679

[7] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly singlemode photonic crystal fibre[J]. Opt. Lett., 1997, 22(13): 961~963

[8] K. Saitoh, M. Koshiba, T. Hasegawa et al.. Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion[J]. Opt. Express, 2003, 11(8): 843~852

[9] K. Saitoh, M. Koshiba. Highly nonlinear dispersionflattened photonic crystal fibers for supercontinuum generation in a telecommunication window[J]. Opt. Express, 2004, 12(10): 2027~2032

[10] J. M. Stone, J. C. Knight. Visibly "white" light generation in uniform photonic crystal fiber using a microchip laser[J]. Opt. Express, 2008, 16(4): 2670~2675

[11] F. Luan, A. K. George, T. D. Hedley et al.. Allsolid photonic bandgap fiber[J]. Opt. Lett., 2004, 29(20): 2369~2371

[12] A. Wang, A. K. George, J. C. Knight. Threelevel neodymium fiber laser incorporating photonic bandgap fiber[J]. Opt. Lett., 2006, 31(10): 1388~1390

[13] T. Taru, J. Hou, J. C. Knight. Raman gain suppression in allsolid photonic bandgap fiber[C]. European Conference and Exhibition of Optical Communication, Berlin, 2007, 7.1.1

[14] C. B. Olausson, C. I. Falk, J. K. Lyngs et al.. Amplification and ASE suppression in a polarizationmaintaining ytterbiumdoped allsolid photonic bandgap fibre[J]. Opt. Express, 2008, 16(18): 13657~13662

[15] A. Shirakawa, H. Maruyama, K. Ueda et al.. Highpower Ybdoped photonic bandgap fiber amplifier at 1150~1200 nm [J]. Opt. Express, 2009, 17(2): 447~454

[16] 方晓惠,胡明列,刘博文 等. 全固态带隙结构光子晶体光纤中非线性过程的数值模拟[J]. 量子电子学报, 2008, 25(6): 742~748

    Fang Xiaohui, Hu Minglie, Liu Bowen et al.. Numerical simulation for nonlinear evolution in allsolid photonic bandgap fibers[J]. Chin. J. Quant. Electron., 2008, 25(6): 742~748

[17] G. P. Agrawal. Nonlinear Fiber Optics [M]. San Diego: Academic Press, 2007. 453~454

[18] 崔秀艳,赵建林,杨德兴 等. 利用改进的分步傅里叶算法模拟超连续谱的产生[J]. 中国激光, 2009, 36(8): 2046~2051

    Cui Xiuyan, Zhao Jianlin, Yang Dexing. Simulation of supercontinuum generation by using modified splitstep Fourier algorithm[J]. Chinese J. Lasers, 2009, 36(8): 2046~2051

[19] I. Cristiani, R. Tediosi, L. Tartara et al.. Dispersive wave generation by solitons in microstructured optical fibers[J]. Opt. Express, 2004, 12(1): 124~135

[20] Xia Chenan, Kumar Malay, Cheng Mingyuan et al.. Power scalable midinfrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts timeaveraged power[J]. Opt. Express, 2007, 15(3): 865~871

[21] T. A. Birks, F. Luan, G. J. Pearce et al.. Bend loss in allsolid bandgap fibres[J]. Opt. Express, 2006, 14(12): 5688~5698

张斌, 侯静, 姜宗福. 全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出[J]. 光学学报, 2010, 30(9): 2513. Zhang Bin, Hou Jing, Jiang Zongfu. Controllable High-Power Supercontinuum Generation in All-Solid Photonic Bandgap Fibers[J]. Acta Optica Sinica, 2010, 30(9): 2513.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!