光学 精密工程, 2017, 25 (4): 943, 网络出版: 2017-06-02  

三相旋流抛光磨粒运动的测量与微气泡补偿

Measurement of abrasive particles by three-phase swirling polishing and its microbubble compensation
作者单位
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州 310014
摘要
研究了气液固三相旋流流场抛光机理和规律。设计了三入口的抛光加工流道, 对气液固三相旋流抛光流场进行了数值模拟。基于模拟结果设计了气液固三相磨粒流旋流流场测量平台, 并通过粒子图像测速法(PIV)测量了微气泡补偿条件下气液固三相旋流抛光的流场参数, 获得了微气泡补偿区域流场的运动图像、速度矢量图和涡量图。PIV测量试验数据显示: 在微气泡补偿区域, 磨粒速度主要集中在30 m/s到80 m/s, 同一测量点高速磨粒出现频率明显增加, 少数磨粒速度达到100 m/s以上; 磨粒平均速度从33.8 m/s增大到44.2 m/s, 经4 h抛光后硅片表面最大粗糙度从10.4 μm下降到1.3 μm。理论和试验研究表明, 气液固三相旋流抛光流场中微气泡溃灭引发的空化冲击效应可增大磨粒动能, 提高抛光效率, 实现B区域的均匀化抛光。
Abstract
The polishing mechanisms and rules of a gas-liquid-solid three-phase swirling flow field were explored. A polishing flow channel with three entrances was designed and the numerical simulation for the gas-liquid-solid three-phase swirling flow field was carried out. Then, a measuring table for the gas-liquid-solid three-phase swirling flow field was designed. The parameters of gas-liquid-solid three-phase swirling flow field were measured by the Particle Image Velocimetry (PIV) under the condition of microbubble compensation and the motion images ,velocity vector images, and the vorticity graphs of the flow field in the microbubble compensation region were obtained. The test data by the PIV show that the speeds of abrasive particles mainly concentrate between 30 m/s and 80m/s in microbubble compensation region, high speed abrasive particles in the same measurement point are signficantly increased, and the speeds of a parts of abrasive particles can be more than 100 m/s. Furthermore, the average speed of abrasive particles is increased from 33.8 m/s to 44.2 m/s and the maximum surface roughness of a silicon wafer decreases from 10.4 μm to 1.3 μm after the 4 h polishing. The research on theory and testing indicates that the cavitation impact effect caused by microbubble collapse in the gas-fluid-solid three-phase swirling polishing flow field increases the kinetic energy of abrasive particles and improves the polishing efficiency, so as to achieve the homogenization polishing of the region B.
参考文献

[1] BEAUCAMP A, NAMBA Y. Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing[J]. CIRP Annals - Manufacturing Technology, 2013, 62(1): 315-318.

[2] 许雪峰,马冰迅,黄亦申,等.利用复合磨粒抛光液的硅片化学机械抛光[J].光学 精密工程,2009,17(7): 1587-1593.

    XU X F, MA B X, HUANG Y SH, et al.. Chemical mechanical polishing for silicon wafer by composite abrasive slurry[J]. Opt. Precision Eng., 2009, 17(7): 1587-1593 .(in Chinese)

[3] PARK Y, LEE H, LEE Y,et al.. Effect of contact angle between retaining ring and polishing pad on material removal uniformity in CMP process[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(9): 1513-1518.

[4] LIU Y M, TAN J B, MA J. Fabrication and shielding effectiveness evaluation of curved mesh optical windows using ray-optic tracing and equivalent film methods[J]. Optics Communications, 2012, 285(20): 4015-4018.

[5] 计时鸣,黄希欢,谭大鹏,等.气-液-固三相磨粒流光整加工及其工艺参数优化[J].光学 精密工程,2016,24(4): 855-864.

    JI SH M, HUANG X H, TAN D P, et al.. Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Opt. Precision Eng., 2016, 24(4): 855-864 .(in Chinese)

[6] 张勤,王建华,黄维军,等.旋流驱动微粒转动的性能与实验[J].光学 精密工程,2015,23(7): 2013-2022.

    ZHANG Q, WANG J H, HUANG W J, et al.. Performance and experiments of particle rotation driven by swirl[J]. Opt. Precision Eng., 2015, 23(7): 2013-2022.(in Chinese)

[7] RAYLEIGH L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Philosophical Magazine, Series 6, 1917, 34(200): 94-98.

[8] 权辉,李仁年,苏清苗,等.基于PIV测试的螺旋离心泵内部流动特性研究[J].农业机械学报,2015,46(4): 28-32,58.

    QUAN H, LI R N, SU Q M, et al.. Internal Flow Characteristic of Screw Centrifugal Pump Based on PIV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(4): 28-32,58.(in Chinese)

[9] 王波兰,宗昕,顾蕴松.PIV技术在复杂二相流场中的应用[J].实验流体力学, 2014,28(1): 60-64.

    WANG B L, ZONG X, GU Y S. The application of PIV technology in complex two-phase flow field[J]. Journal of Experiments in Fluid Mechanics, 2014,28(1): 60-64.(in Chinese)

[10] CHENG W, MURAI Y, ISHIKAWA M A, et al.. An algorithm for estimating liquid flow field from PTV measurement data of bubble motion[J]. Transactions of the Visualization Society of Japan, 2003, 23(11): 107-114.

[11] 高晖,郭烈锦,赵丙强,等.弯管内气液固三相流中液膜区流场的PIV测量[J].工程热物理学报,2004,25(2): 255-258.

    GAO H, GUO L J, ZHAO B Q, et al.. PIV measurement of liquid film flow field in gas-liquid-solid three phase flow through a curved pipe[J].Journal of Engineering Thermophysics, 2004, 25(2): 255-258.(in Chinese)

[12] 赵斌娟,袁寿其,刘厚林,等.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J].农业工程学报,2008, 24(1): 7-12.

    ZHAO B J, YUAN SH Q, LIU H L, et al.. Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on Mixture model[J]. Transactions of the CSAE, 2008, 24(1): 7-12.(in Chinese)

[13] 崔凯,张海,王卫良,等.旋流燃烧器数值模拟中Realizable κ-ε和RSM模型的比较[J].工程热物理学报,2012, 33(11): 2006-2009.

    CUI K, ZHANG H, WANG W L, et al.. Comparison between realizable κ-ε and RSM model in the simulation for a swirl burner[J]. Journal of Engineering Thermophysics, 2012, 33(11): 2006-2009.(in Chinese)

[14] 李琛,善盈盈,厉志安,等.图像粒子测速技术测量软性磨粒流流场[J].农业工程学报,2015,31(5): 71-77.

    LI CH, SHAN Y Y, LI ZH A, et al.. Measurement of softness abrasive flow field based on particles image velocimetry [J].Transactions of the CSAE, 2015,31(5): 71-77.(in Chinese)

计时鸣, 余昌利, 赵军. 三相旋流抛光磨粒运动的测量与微气泡补偿[J]. 光学 精密工程, 2017, 25(4): 943. JI Shi-Ming, YU Chang-Li, ZHAO Jun. Measurement of abrasive particles by three-phase swirling polishing and its microbubble compensation[J]. Optics and Precision Engineering, 2017, 25(4): 943.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!