应用光学, 2019, 40 (2): 306, 网络出版: 2019-03-26   

基于超表面材料的扇出衍射光学元件

Metasurface fan-out diffractive optical elements
作者单位
1 武汉大学 电子信息学院, 湖北 武汉 430072
2 武汉邮电科学研究院 光纤通信技术与网络国家重点实验室, 湖北 武汉 430074
摘要
提出一种基于电介质纳米砖阵列的扇出衍射光学元件的设计和实现方案, 其纳米砖的深宽比低至1.5。这种扇出衍射光学元件被一束波长为633 nm的入射光束照射时, 可以在远场中得到均匀的4×4点阵, 发散角为32°×32°, 且数值模拟与实验结果吻合良好。基于超表面材料的扇出衍射光学元件具有连续、精确的相位操纵能力和较高的偏振转换效率, 并且仅需一步光刻制造工艺, 可以广泛应用于工程光学的各种领域, 例如光学传感, 激光雷达, 激光加工等。
Abstract
Here we report the design and realization of dielectric fan-out diffractive optical elements (DOEs) operating in visible range and with nanobrick depth-width-ratio as low as 1.5. The metasurface-based fan-out DOEs realized here, when illuminated by an incident beam with 633 nm wavelength , the uniform 4×4 spot arrays with an extending angle of 32°×32° can be obtained in the far field. Experimental results agree well with the theoretical analysis and numerical simulation conclusions. Because of these advantages of the single-step nonstructural fabrication procedures, continuous and accurate phase manipulation, and strong polarization conversion,the metasurface-based fan-out DOEs could be utilized for various applications such as optical sensing, lidar, laser machining and so on.
参考文献

[1] ZHENG G X, MHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[2] LI Z L, ZHENG G X, HE P G, et al. All-silicon nanorod-based Dammann gratings[J]. Optics Letters, 2015, 40(18): 4285-4288.

[3] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.

[4] LI Q T, DONG F, WANG B, et al. Polarization-independent and high-efficiency dielectric metasurfaces for visible light[J]. Optics Express, 2016, 24(15): 16309-16319.

[5] LI Z L, KIM I, ZHANG L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382-9389.

[6] DENG Z L, ZHANG S, WANG G P. A facile grating approach towards broadband,wide-angle and high-efficiency holographic metasurfaces[J]. Nanoscale, 2016, 8(3): 1588-1594.

[7] ZHENG G, LIU G, KENNEY M G, et al. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays[J]. Optics Express, 2016, 24(6): 6749-6757.

[8] HUANG K, DONG Z G, MEI S T, et al. Silicon multi-meta-holograms for the broadband visible light[J]. Laser & Photonics Reviews, 2016, 10(3): 500-509.

[9] HUANG Y W, CHEN W T, TSAI W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127.

[10] JIANG S C, XIONG X, HU Y S, et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Physical Review X, 2014, 4(2): 021026.

[11] YE W M, GUO Q H, XIANG Y J, et al. Phenomenological modeling of geometric metasurfaces[J]. Optics Express, 2016, 24(7): 7120-7132.

[12] YE W M, ZEUNER F, LI X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930.

[13] DENG J, LI Z L, ZHENG G X, et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces[J]. Optics Express, 2018, 26(9): 11843-11849.

[14] LI J X, KAMIN S, ZHENG G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6): eaar6768.

[15] WU L, TAO J, ZHENG G X. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase[J]. Physical Review B, 2018, 97(24): 245426.

[16] LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.

[17] WAN W W, GAO J, YANG X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671-10680.

[18] ZHAO W, LIU B Y, JIANG H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Optics Letters, 2016, 41(1): 147-150.

[19] WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

[20] HUANG L L, CHEN X Z, MHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

[21] YUE F Y, ZANG X F, WEN D D, et al. Geometric phase generated optical illusion[J]. Scientific Reports, 2017, 7: 11440.

[22] WANG Y Q, PU M B, ZHANG Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2016, 5: 17733.

[23] KHORASANINEJAD M, CROZIER K B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter[J]. Nature Communications, 2014, 5: 5386.

[24] XU H X, WANG G M, CAI T, et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 2016, 24(24): 27836.

[25] CUI T J, LIU S, LI L L. Information entropy of coding metasurface[J]. Light: Science & Applications, 2016, 5(11): e16172.

[26] WEI Q S, HUANG L L, LI X W, et al. Broadband multiplane holography based on plasmonic metasurface[J]. Advanced Optical Materials, 2017, 5(18): 1700434.

[27] SUN W J, HE Q, SUN S L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light: Science & Applications, 2016, 5(1): e16003.

[28] YUE F Y, ZANG X F, WEN D D, et al. Geometric phase generated optical illusion[J]. Scientific Reports, 2017, 7: 11440.

[29] LI T, CHEN J, ZHU S N. Manipulating surface plasmon propagation: from beam modulation to near-field holo-graphy[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050002.

[30] 郑国兴, 吕良宇, 李松, 等. 基于超表面材料的光波相位精密操控新技术[J]. 应用光学, 2017, 38(2): 153-158.

    ZHENG Guoxing, LYU Liangyu, LI Song, et al. Accurate controlling of optical phase based on metasurfaces[J]. Journal of Applied Optics, 2017, 38(2): 153-158.

陈奎先, 王宇, 何桃桃, 崔圆, 陶金, 李子乐, 郑国兴. 基于超表面材料的扇出衍射光学元件[J]. 应用光学, 2019, 40(2): 306. CHEN Kuixian, WANG Yu, HE Taotao, CUI Yuan, TAO Jin, LI Zile, ZHENG Guoxing. Metasurface fan-out diffractive optical elements[J]. Journal of Applied Optics, 2019, 40(2): 306.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!