红外与激光工程, 2019, 48 (8): 0814003, 网络出版: 2019-09-03  

铺层角度误差对CFRP平面反射镜面形影响研究

Effect of ply angle misalignment on surface aberration of CFRP reflective mirror
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了解决CFRP(carbon fiber reinforced polymer)平面反射镜在加工成型后的面形存在像散像差的问题, 建立相关的理论模型以对其产生机理进行解释, 并设计实验对模型进行验证。首先基于经典层合板的热效应理论, 考虑到CFRP平面反射镜制造过程中存在铺层角度误差及温度变化等因素, 推导了相关公式以说明当对称均衡铺层CFRP反射镜存在铺层角度误差时, 在热效应的影响下会产生马鞍形的变形, 即会导致面形出现像散像差。设计了相关实验, 制备了两组铺层角度分别为[0° 90° 45° -45°]2s和[(0° 90° 45° -45°)s]2的反射镜样片, 并利用Zygo长波红外干涉仪(λ=10.6 μm)对样片总体面形及像散像差进行检测。实验数据显示: 第一组样片像散像差的RMS值平均为0.034λ, 第二组样片像散像差的RMS值平均为0.510λ。证明了铺层角度误差是使反射镜产生像散像差的主要原因之一, 而且像差大小会随着反射镜弯曲刚度准各向同性的提高而减小。
Abstract
In order to solve the problem that there exists astigmatism during the fabrication of carbon fiber reinforced polymer(CFRP) reflective mirror, a theoretical model was established to explain the relations, and relative experiments were made to verify the model. First, from classical laminate thermal effect theory, ply angle misalignment and temperature variation during manufacturing process were considered. The corresponding formulas were deduced to demonstrate that the surface of CFRP reflective mirror existed astigmatism under thermal effect because of ply angle misalignment. Two groups of samples with respective ply sequence [0° 90° 45° -45°]2s and [(0° 90° 45° -45°)s]2 were manufactured and their astigmatism were measured with a Zygo long-wave infrared interferometer(λ=10.6 μm). Experimental results indicate that average astigmatism RMS of the front group is 0.034λ, and average astigmatism RMS of the latter group is 0.510λ. It verifies that one of the main reasons causing astigmatism of CFRP reflective mirror is ply angle misalignment, and the degree of astigmatism will decrease by increasing quasi-isotropy of bending stiffness.
参考文献

[1] 王永杰, 解永杰, 马臻, 等. 空间反射镜新材料研究进展[J]. 材料导报, 2016, 30(4A): 143-147, 153.

    Wang Yongjie, Xie Yongjie, Ma Zhen, et al. Research progress of new space mirror materials[J]. Materials Review, 2016, 30(4A): 143-147, 153. (in Chinese)

[2] 林再文, 刘永琪, 梁岩, 等. 碳纤维增强复合材料在空间光学结构中的应用[J]. 光学 精密工程, 2007, 15(8): 1181-1185.

    Lin Zaiwen, Liu Yongqi, Liang Yan, et al. Application of carbon fiber reinforced composite to space optical structure [J]. Optics and Precision Engineering, 2007, 15(8): 1181-1185. (in Chinese)

[3] Sugita S Awaki H, Kurihara D, et al. Studies of lightweight x-ray telescope with CFRP [C]//Conference on Space Telescopes and Instrumentation: Ultraviolet to Gamma Ray, Montreal, Canada: 2014, 914447.

[4] Wilcox C, Santiago F, Jungwirth M, et al. First light with a carbon fiber reinforced polymer 0.4 meter telescope [C]// Conference on MEMS Adaptive Optics VIII, 2014, 897805.

[5] Xu Liang, Ding Jiaoteng, Wang Yongjie, et al. The development of high precision carbon fiber composite mirror [C]//8th International Symposium on Advanced Optical Manufacturing and Testing Technologies-Advanced Optical Manufacturing Technologies, 2016: 96831Z.

[6] Yang Zhiyong, Zhang Jianbao, Xie Yongjie, et al. Influence of layup and curing on the surface accuracy in the manufacturing of carbon fiber reinforced polymer(CFRP) composite space mirrors [J]. Applied Composite Materials, 2017, 24(6): 1447-1458.

[7] 杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究[J]. 复合材料学报, 2017, 34(1): 1-11.

    Yang Zhiyong, Zhang Boming, Xie Yongjie, et al. Research progress on fabrication technology of space mirror using carbon fiber composite [J]. Acta Material Composite Sinica, 2017, 34(1): 1-11. (in Chinese)

[8] Thompson S, Bichonand S, Grant R. Influence of ply misalignment on form error in the manufacturing of CFRP mirrors [J]. Optical Material Express, 2014, 4(1): 79-91.

[9] 李顺林, 王兴业. 复合材料结构设计基础[M]. 武汉: 武汉工业大学出版社, 1993.

    Li Shunlin, Wang Xingye. The Base of Construction Design of Composites[M]. Wuhan: Wuhan University of Industry Press, 1993. (in Chinese)

[10] 矫桂琼, 贾普荣. 复合材料力学[M]. 西安: 西北工业大学出版社, 2008.

    Jiao Guiqiong, Jia Purong. Composite Mechanics[M]. Xi′an: Northwestern Uuiversity of Technology Press, 2008. (in Chinese)

[11] 夏瑜, 曾春梅, 郭培基. 主动成型准各向同性CFRP复合材料反射镜的铺层设计[J]. 红外与激光工程, 2012, 41(7): 1885-1892.

    Xia Yu, Zeng Chunmei, Guo Peiji. Lay-up design of quasi-isotropic CFRP mirror for active forming[J]. Infrared and Laser Engineering, 2012, 41(7): 1885-1892. (in Chinese)

[12] Tanaka S, Ikeda T, Senba A. Sensitivity analysis of thermal deformation of CFRP laminate reflector due to fiber orientation error [J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4423-4426.

[13] 程路超, 潘辉, 谢军, 等. 模具材质对CFRP平面反射镜离焦面形误差的研究[J]. 长春理工大学学报, 2017, 40(1): 10-13.

    Cheng Luchao, Pan Hui, Xie Jun, et al. Study on power error of CFRP plane reflector caused by mold material [J]. Journal of Changchun University of Science and Technology, 2017, 40(1): 10-13. (in Chinese)

[14] Keith B, Victor L, Gregory J. Integrated Optomechanical Analysis[M]. Bellingham: The International Society For Optical Engineering, 2012.

宫鹏, 程路超, 董健, 何锋赟, 陈涛, 刘震宇. 铺层角度误差对CFRP平面反射镜面形影响研究[J]. 红外与激光工程, 2019, 48(8): 0814003. Gong Peng, Cheng Luchao, Dong Jian, He Fengyun, Chen Tao, Liu Zhenyu. Effect of ply angle misalignment on surface aberration of CFRP reflective mirror[J]. Infrared and Laser Engineering, 2019, 48(8): 0814003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!