红外与激光工程, 2016, 45 (11): 1103001, 网络出版: 2017-01-20   

远距离物质拉曼光谱探测系统

Remote Raman spectrum detection system of material
作者单位
1 北京信息科技大学 光电信息与仪器北京市工程研究中心, 北京 100016
2 合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230009
摘要
为了实现远距离物质的识别检测, 设计和建立了脉冲门控非接触式的拉曼光谱探测系统, 利用强脉冲激光的高能量密度(~106 W)增强被探测物质的拉曼散射信号, 通过大口径透镜系统提高拉曼光收集效率, 同时采用同步延时系统控制ICCD的开启和积分时间, 有效地去除背景光和荧光的干扰, 提高信噪比, 从而显著增加拉曼光谱探测距离。初步研究了不同通光口径对探测能力的影响, 以及在950 mm的探测距离上获得了清晰的硫元素和纯净水的拉曼光谱信号。
Abstract
In order to realize the recognition and detection of remote material, a non-contact pulse gated Raman detection system was designed and established, by using the high energy density of strong pulsed laser(~106 W) enhanced the Raman scattering signal from the substances detected, a large aperture lens system was used to improve Raman light collection efficiency, while using synchronous delay system to control the open and integral time of ICCD, the background interference light and fluorescence were removed to improve the signal-to-noise ratio, thus increasing the Raman spectrum detection distance. The influence of different lens aperture was studied, the clear Raman spectra of sulfur elements and water were also obtained at a detection distance of 950 mm.
参考文献

[1] Misra A K, Sharma S K, Acosta T E, et al. Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime[J]. Applied Spectroscopy, 2012, 66(11):1279-1285.

[2] Sadate S, Kassu A, Sharma A, et al. Standoff Raman measurement of nitrates in water[C]//Remote Sensing and Modeling of Ecosystems for Sustainability VIII, 2011: 29-53.

[3] Liu Yi, Wang Guoqing, Zhang Zhaobin. Laser Raman spectrometry and its applications in petrochemical field[J]. Shiyou Huagong/petrochemical Technology, 2014, 43(10): 1214-1220. (in Chinese)

[4] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 13831-13840.

[5] Sun Meijuan, Liu Junxian, Wang Xue, et al. Application of Raman spectroscopy in the microbiology[J]. Biotechnology Bulletin, 2012(10): 63-68. (in Chinese)

[6] Zhou Xiaofang, Fang Yan, Zhang Pengxiang. Raman spectra of pesticides on the surface of fruits[J]. Chinese Journal of Light Scattering, 2004, 16(1): 11-14. (in Chinese)

[7] Olcott Marshall A, Marshall C P. Field-based Raman spectroscopic analyses of an Ordovician stromatolite[J]. Astrobiology, 2013, 13(9): 814-820.

[8] Li Rubi. The application of the laser raman spectroscopy in gem determination[J]. Journal of Changzhou Teachers College of Technology, 2001, 7(2): 1-4. (in Chinese)

[9] Fan Jianliang, Guo Shouguo, Liu Xueliang. Application of Raman spectrometer(785 nm)to jadeite test[J]. Spectroscopy & Spectral Analysis, 2007, 27(10): 2057-2060. (in Chinese)

[10] Mogilevsky G, Borland L, Brickhouse M, et al. Raman spectroscopy for homeland security applications[J]. International Journal of Spectroscopy, 2012: 808079.

[11] John Christian Curwen. Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument[J]. Applied Spectroscopy, 2005, 59(6): 769-775.

[12] Gaft M, Naglil. UV gated Raman spectroscopy for standoff detection of explosives[J]. Optical Materials, 2008, 30(11): 1739-1746.

[13] Ramírez-Cedeno M L, Ortiz-Rivera W, Pacheco-Londono L C, et al. Remote detection of hazardous liquids concealed in glass and plastic containers[J]. IEEE Sensors Journal, 2010, 10(3): 693-698.

[14] Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Philosophical Transactions, 2010, 368(1922): 3167-3191.

[15] Maskall G. Spatially offset Raman spectroscopy (SORS) for liquid screening[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8189(1):167-175.

[16] Zachhuber B, Ramer G, Hobro A, et al. Stand-off Raman spectroscopy: a powerful technique for qualitative and quantitative analysis of inorganic and organic compounds including explosives[J]. Analytical & Bioanalytical Chemistry, 2011, 400(8): 2439-2447.

[17] Rull F, Vegas A, Sansano A, et al. Analysis of arctic ices by remote Raman spectroscopy[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2011, 80(1): 148-155.

[18] Jin H C, Cho S G. Nanosecond gated raman spectroscopy for standoff detection of hazardous materials[J]. Bulletin- Korean Chemical Society, 2014, 35(12): 3547-3552.

[19] Skulinova M, Lefebvre C, Sobron P, et al. Time-resolved stand-off UV-Raman spectroscopy for planetary exploration[J]. Planetary & Space Science, 2014, 92(3): 88-100.

[20] Eshelman E, Daly M G, Slater G, et al. Time-resolved detection of aromatic compounds on planetary surfaces by ultraviolet laser induced fluorescence and Raman spectroscopy[J]. Planetary & Space Science, 2015, 119: 200-207.

[21] Beegle L, Bhartia R, White M, et al. SHERLOC: scanning habitable environments with Raman & luminescence for organics & chemicals[C]//IEEE Aerospace Conference, 2015:1-11.

[22] Matroodi F, Soleimaninejad H, Tavassoli S H. A single pulsed laser set-up for combined LIBS and Raman spectroscopy[C]// Icors, 2012(5): 125.

[23] Scaffidi J P, Gregas M K, Lauly B, et al. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance raman scattering at a distance of 15 Meters[J]. Applied Spectroscopy, 2010, 64(5): 485-492.

[24] Pérez1 C, Diaz1 E, Moral1 A, et al. Raman laer spectrometer development for exoMars[J]. EPSC Abstracts, 2013, 9: 935.

[25] Wiens R C, Sharma S K, Clegg S M, et al. Combined remote raman spectroscopy and LIBS instrumentation for mars astrobiology exploration[C]//Seventh International Conference on Mars, 2007(7): 3092.

[26] Wu Bin, Chen Kunfeng, Wang Hengfei, et al. Effect of ethanol molecules on change of water hydrogen bonding with laser Raman spectra[J]. Infrared and Laser Engineering, 2013, 42(11): 2951-2956. (in Chinese)

[27] Wang Ren, Jiao Cuiling, Xu Guoqing, et al. Growth and Raman spectrum of Au-doped Hg(1-x)CdxTe epitaxial crystals[J]. Infrared and Laser Engineering, 2014, 43(9): 3046-3050. (in Chinese)

[28] Wang Xin, Wu Jinglin, Fan Xianguang, et al. Design of Raman spectroscopy measurement system based on shifted excitation method using two laser diodes with different wavelengths[J]. Infrared and Laser Engineering, 2016, 45(1): 52-57. (in Chinese)

[29] Zhang Li, Zheng Haiyang, Wang Yinping, et al. Characteristics of Raman spectrum from stand-off detection[J]. Acta Physica, 2016, 65(5): 134-143. (in Chinese)

[30] Zhang Dan. Study of Raman spectrum technique for material detection on Mars surface[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)

[31] Buren Batu, Han Siqingaowa, Hasi Wuliji, et al. Detection of sulphur in 2 mongolian medicines using Raman spectroscopy[J]. Chin J Pharm Anal, 2015(7): 1279-1282. (in Chinese)

[32] Zhao Yingchun, Ren Lingling, Wei Weisheng, et al. Calibration procedure of laser confocal micro-raman spectrometer[J]. Spectroscopy & Spectral Analysis, 2015(9): 2544-2547. (in Chinese)

姚齐峰, 王帅, 夏嘉斌, 张雯, 祝连庆. 远距离物质拉曼光谱探测系统[J]. 红外与激光工程, 2016, 45(11): 1103001. Yao Qifeng, Wang Shuai, Xia Jiabing, Zhang Wen, Zhu Lianqing. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016, 45(11): 1103001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!