激光与光电子学进展, 2018, 55 (8): 081101, 网络出版: 2018-08-13   

水下物体偏振成像探测的实验研究 下载: 682次

Experimental Study on Underwater Objects Detection Based on Polarization Imaging
作者单位
1 中国地质大学(武汉)地球物理与空间信息学院, 湖北 武汉 430074
2 海南热带海洋学院海洋信息工程学院, 海南 三亚 572022
3 卫星海洋环境动力学国家重点实验室, 国家海洋局第二海洋研究所, 浙江 杭州 310000
摘要
偏振包含丰富的物体表面反射、散射信息,可有效提高成像探测能力。当前,水下物体偏振成像探测实验主要集中在偏振度研究,而缺乏对Stokes矢量各元素成像效果的研究。通过水槽实验,开展不同水下物体放置深度、泥沙浓度、目标物材质及探测波段的因素对偏振成像探测的影响。结果表明,偏振成像可获得比传统辐射强度成像更为清晰的水下目标物图像,能够更好地获取水下物体的边界轮廓、纹理等信息,可以有效抑制水体对光的吸收、散射影响;与传统的辐射强度成像相比,偏振成像图像的信息量随目标物放置深度衰减较为缓慢,可探测更大深度的水下目标;泥沙浓度对偏振图像的影响比辐射强度图像大,但偏振图像仍然可以较好地在高泥沙水体中检测出目标物的边缘轮廓,且比传统辐射强度图像更为清晰;波长对水下物体偏振成像探测具有一定的影响,在清洁水体,蓝绿波段偏振成像总体效果最佳。
Abstract
Polarization includes rich information of the reflection and scattering properties of the objects, which can effectively improve the detection capability. Previous studies on the polarization imaging of underwater objects mainly focused on the degree of the polarization, however, the capacities of Stokes components for imaging the underwater objects are poorly known. Based on the tank experiments, the influences of object depth, sediment concentration, object material and detection band on the polarization imaging detection are investigated. The results show that compared with the traditional imaging based on radiation intensity, the polarization imaging can obtain clearer image and better information of boundaries and textures of underwater objects, with the capacity of diminishing the impacts of the water absorption and scattering effects. Moreover, the detection capacity of polarization imaging with increasing object depth deceases more slowly than that of the traditional imaging based on radiation intensity, indicating that polarization imaging can detect deeper objects. The influence of sediment concentration on polarization imaging is more significant than that on the radiation intensity imaging, but the polarization imaging can still detect the edge contour of the target in the high concentration of sediment. The detection wavelength has some influence on the capacity of the polarization imaging, and the blue and green light wavelengths are the optimal bands for polarization imaging of the underwater objects.
参考文献

[1] Mclean E A, Burris H R, Strand M P. Short-pulse rang-gated optical imaging in turbid water[J]. Applied Optics, 1995, 34(21): 4343-4351.

[2] 胡冬梅, 刘泉, 牛国成. 可见光偏振成像系统对低对比度目标的探测[J]. 激光与光电子学进展, 2017, 54(6): 061101.

    Hu D M, Liu Q, Niu G C. Low contrast target detection based on visible light polarization imaging system[J]. Laser & Optoelectronics Progress, 2017, 54(6): 061101.

[3] 孙仲秋, 赵云升. 基于地表偏振反射模型的植被冠层偏振反射特性研究[J]. 激光与光电子学进展, 2016, 53(10): 102802.

    Sun Z Q, Zhao Y S. Polarized reflectance characteristics of vegetation canopies based on polarization reflection model[J]. Laser & Optoelectronics Progress, 2016, 53(10): 102802.

[4] 刘佳, 黄海清, 白雁, 等. 不同线偏振光对水体吸收系数测量的影响[J]. 光学学报, 2014, 34(6): 0601003.

    Liu J, Huang H Q, Bai Y, et al. Influences of liner polarization light on the measurement of water absorption coefficient[J]. Acta Optica Sinica, 2014, 34(6): 0601003.

[5] Vasilkov A P, Goldin Y A, Gureev B A. Airborne polarized lidar detection of scattering layers in the ocean[J]. Applied Optics, 2001, 40(24): 4353-4364.

[6] Cariou J, Le Jeune B, Lotrian J, et al. Polarization effects of seawater and underwater targets[J]. Applied Optics, 1990, 29(11): 1689-1695.

[7] 刘晓, 王峰, 薛模根. 基于偏振特性的伪装目标检测方法研究[J]. 光学技术, 2008, 34(5): 787-790.

    Liu X, Wang F, Xue M G. The study of camouflage target detection based on polarization characteristics[J]. Optical Technique, 2008, 34(7): 787-790.

[8] 曹念文, 刘文清, 张玉钧. 偏振成像技术提高成像清晰度、成像距离的定量研究[J]. 物理学报, 2000, 49(1): 61-66.

    Cao N W, Liu W Q, Zhang Y J. Quantitative study of improvement of the imaging contrast and imaging range by the polarization technique[J]. Acta Physica Sinica, 2000, 49(1): 61-66.

[9] 曾延安, 马娟, 常大定. 基于VC++的偏振度图像获取[J]. 微计算机信息, 2007, 23(24): 304-305.

    Zeng Y A, Ma J, Chang D D. Disposal of polarization imaging based on VC++[J]. Microcomputer Information, 2007, 23(24): 304-305.

[10] 沈瑜, 党建武, 王阳萍, 等. 基于Tetrolet变换的彩色水下图像清晰化算法[J]. 光学学报, 2017, 37(9): 0910002.

    Shen Y, Dang J W, Wang Y P, et al. A color underwater image clearness algorithm based on Tetrolet transform[J]. Acta Optica Sinica, 2017, 37(9): 0910002.

[11] 尹海宁, 胡良梅, 范之国. 一种基于特征分析的偏振图像融合方法[J]. 应用光学, 2015, 36(2): 220-226.

    Yin H N, Hu L M, Fan Z G. Fusion method for polarization images based on images analysis of features[J]. Journal of Applied Optics, 2015, 36(2): 220-226.

[12] 韩捷飞, 夏岷, 孙立颖, 等. 水下目标不同偏振特性对成像系统分辨率的影响[J]. 光学学报, 2016, 36(3): 0311001.

    Han J F, Xia M, Sun L Y, et al. Influence of underwater targets with different polarization properties on the resolution of imaging system[J]. Acta Optica Sinica, 2016, 36(3): 0311001.

[13] 管风, 张晓晖. 水下连续光成像系统照明光源的最优化波长选择[J]. 光学与光电技术, 2016, 14(4): 48-52.

    Guan F, Zhang X H. Optimal wavelength selection of illumination source for underwater continuous light imaging system[J]. Optics & Optoelectronic Technology, 2016, 14(4): 48-52.

[14] 李黎, 王惠刚, 刘星. 基于改进暗原色先验和颜色校正的水下图像增强[J]. 光学学报, 2017, 37(12): 1211003.

    Li L, Wang H G, Liu X. Underwater image enhancement based on improved dark channel prior and color correction[J]. Acta Optica Sinica, 2017, 37(12): 1211003.

吴中芳, 周少聪, 何贤强. 水下物体偏振成像探测的实验研究[J]. 激光与光电子学进展, 2018, 55(8): 081101. Wu Zhongfang, Zhou Shaocong, He Xianqiang. Experimental Study on Underwater Objects Detection Based on Polarization Imaging[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081101.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!