强激光与粒子束, 2014, 26 (12): 121003, 网络出版: 2015-01-08  

基于扫描F-P标准具的高光谱分辨低平流层温度探测

Scanning F-P etalon based high spectral resolution lidar for low-stratosphere temperature measurement
作者单位
1 中国科学技术大学 地球与空间科学学院, 合肥 230026
2 中国科学院 近地空间环境重点实验室, 合肥 230026
摘要
报道了一种基于扫描F-P标准具的高光谱分辨低平流层大气温度探测技术。通过扫描F-P标准具,获得大气分子瑞利后向散射的透过率分布。对该透过率进行非线性拟合,由拟合得到的谱宽计算大气温度分布。为了减小频率不稳定引起的系统误差,采用静态的F-P标准具实时监测激光出射频率,并在数据处理中进行补偿。由时间分辨率2000 s的激光雷达原始信号的信噪比,根据最大似然估计误差分析,该方法在30 km以下的探测误差小于1.9 K,50 km以下的探测误差小于9.8 K。在对比实验中,在18~36 km高光谱分辨激光雷达与探空气球探测的温度廓线最大偏差4.7 K;在27~34 km,高光谱分辨激光雷达与瑞利积分激光雷达探测的温度最大偏差2.7 K。在15~27 km,由于气溶胶的污染,瑞利积分激光雷达的温度明显偏离其他两种探测结果,最大偏差达22.8 K。
Abstract
A high spectral resolution lidar(HSRL)for measurement of low-stratosphere temperature by scanning Fabry-Perot interferometer(FPI)is proposed and demonstrated. The transmission of Rayleigh backscatter through the FPI is obtained by scanning the cavity spacing of the FPI, and then fitted to Gaussian function using the nonlinear fitting algorithm. Temperature is calculated from the fitted bandwidth of the measured transmission. To reduce systematic error due to frequency instability of the laser, another solid FPI is incorporated into the optical receiver to monitor the frequency drift, which compensates in the data processing. The statistical error is calculated based on a maximum likelihood estimator, which is less than 1.9 K/9.8 K below 30 km/50 km. In the comparison experiment, the max temperature deviation between the high spectral resolution lidar(HSRL)and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar(RIL)from 27 km to 34 km. The temperature profile from Rayleigh integration lidar deviates from the results from HSRL and radiosonde obviously from 15 km to 27 km, with a max deviation of 22.8 K, which may due to the aerosol contamination.
参考文献

[1] Ansmann A, Wandinger U, Riebesell M, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics, 1992, 31(33): 7113-7131.

[2] Xia H, Sun D, Yang Y, et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 2007, 46(29): 7120-7131.

[3] Xia H, Dou X, Sun D, et al. Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method[J]. Optics Express, 2012, 20(14): 15286-15300.

[4] 夏海云,孙东松,沈发华,等. 双边缘技术多普勒测风激光雷达标准具的优化[J]. 强激光与粒子束,2006,18(11): 1774-1778.(Xia Haiyun, Sun Dongsong, Shen Fahua, et al. Optimization of etalon parameters in direct detection Doppler wind lidar. High Power Laser and Particle Beams, 2006, 18(11): 1774-1778)

[5] 上官明佳,夏海云,舒志峰,等. 双边缘瑞利测风技术中信号通道分光比对风速反演的影响[J]. 中国激光, 2014, 41: 0714001.(Shangguan Mingjia, Xia Haiyun, Shu Zhifeng, et al. Effect of splitting ratio on the inversion of wind in the dual edge Rayleigh wind measurement technology. Chinese J Lasers, 2014, 41: 0714001)

[6] Xia H, Dou X, Shangguan M, et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar[J]. Optics Express, 2014, 22(18): 21775-21789.

[7] 唐磊,董吉辉,吴海滨. 多普勒测风激光雷达风场探测结果分析[J]. 强激光与粒子束 2012, 24(9): 2037-2042.(Tang Lei, Dong Jihui, Wu Haibin. Analysis of wind field measurement results of Doppler lidar. High Power Laser and Particle Beams, 2012, 24(9): 2037-2042)

[8] 李国会,叶一东,向汝建,等. 差分吸收激光雷达测量NO2浓度的实验研究[J]. 强激光与粒子束,2006,18(5):765-768.(Li Guohui, Ye Yidong, Xiang Rujian, et al. Experiment study of NO2 concentration measurement with difference absorption lidar. High Power Laser and Particle Beams, 2006, 18(5): 765-768).

[9] 苑克娥,张世国,胡顺星,等. 对流层低层臭氧的差分吸收激光雷达测量[J]. 强激光与粒子束, 2013, 25(3), 553-556.(Yuan Ke’e, Zhang Shiguo, Hu Shunxing, et al. Measurements of ozone using ultraviolet differential absorption lidar in low troposphere. High Power Laser and Particle Beams, 2013, 25(3): 553-556)

[10] Ramaswamy V, Chanin M L, Angell J, et al. Stratospheric temperature trends: Observations and model simulations[J]. Reviews of Geophysics, 2001, 39(1): 71-122.

[11] Alpers M, Eixmann R, Fricke-Begemann C, et al. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering[J]. Atmospheric Chemistry and Physics, 2004, 4(3): 793-800.

[12] 卜令兵,郭劲秋,田力,等. 用于大气温度廓线测量的瑞利-拉曼激光雷达[J]. 强激光与粒子束,2010, 22(7): 1449-1452.(Bu Lingbing, Guo Jinqiu, Tian Li, et al. Rayleigh- Raman lidar used for atmospheric temperature profile measurement. High Power Laser and Particle Beams, 2010, 22(7): 1449-1452)

[13] Chen W N, Tsao C C, Nee J B. Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(1): 39-49.

[14] Behrendt A, Nakamura T, Tsuda T. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere[J]. Applied Optics, 2004, 43(14): 2930-2939.

[15] Souprayen C, Garnier A, Hertzog A, et al. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results[J]. Applied Optics, 1999, 38(12): 2410-2421.

[16] Witschas B, Vieitez M O, Van Duijn E J, et al. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air[J]. Applied Optics, 2010, 49(22): 4217-4227.

[17] Zheng Q. Model for polarized and depolarized Rayleigh Brillouin scattering spectra in molecular gases[J]. Optics Express, 2007, 15(21): 14257-14265.

[18] Witschas B. Analytical model for Rayleigh-Brillouin line shapes in air[J]. Applied Optics, 2011, 50(3): 267-270.

[19] Hagen N, Kupinski M, Dereniak E. Gaussian profile estimation in one dimension[J]. Applied Optics, 2007, 46(22): 5374-5383.

上官明佳, 夏海云, 舒志峰, 窦贤康, 王冲, 裘家伟, 韩於利, 赵若灿, 张飞飞, 郭洁, 高园园. 基于扫描F-P标准具的高光谱分辨低平流层温度探测[J]. 强激光与粒子束, 2014, 26(12): 121003. Shangguan Mingjia, Xia Haiyun, Shu Zhifeng, Dou Xiankang, Wang Chong, Qiu Jiawei, Han Yuli, Zhao Ruocan, Zhang Feifei, Guo Jie, Gao Yuanyuan. Scanning F-P etalon based high spectral resolution lidar for low-stratosphere temperature measurement[J]. High Power Laser and Particle Beams, 2014, 26(12): 121003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!