光子学报, 2016, 45 (9): 0912003, 网络出版: 2016-10-19   

基于TDLAS技术的全量程激光甲烷传感器

Full Scale Methane Sensor Based on TDLAS Technology
作者单位
1 中国科学院安徽光学精密机械研究所 安徽省光子器件与材料重点实验室, 合肥 230031
2 中国科学技术大学, 合肥 230026
摘要
根据煤矿安全生产监控系统对测量甲烷浓度全量程高准确度的需要, 基于可调谐半导体激光吸收光谱技术, 设计了一种全量程一体化激光甲烷传感器.采用1 653.72 nm 分布式反馈半导体激光器作为系统光源, 单板电路实现激光器驱动、温度控制、信号调制与解调、浓度反演.为兼顾高测量准确度和大动态测量范围, 系统在低浓度时利用波长调制技术进行甲烷浓度在线检测; 当气体浓度大于阈值时, 自动切换到直接吸收检测技术.实验结果表明, 该传感器在浓度范围为0~5%内误差小于±0.06%, 在浓度范围为5~100%内误差小于真值的±6%, 响应时间约为15 s, 满足矿井实际测量需要.
Abstract
According to the needs of full range and high precision measurements of methane concentration in coal mine safety production monitoring system, a full-scale integrated laser methane sensor was designed based on a Tunable Diode Laser Absorption Spectroscopy (TDLAS). A 1 653.72 nm Distributed Feedback Laser(DFB) semiconductor laser was employed as the system light source. Laser driving, temperature controlling, signal modulation and demodulation, and concentration calculation were realized by a single board circuit. To meet a high measurement precision and a large dynamic measurement range simultaneously, the wavelength modulation technique was used to detect the methane at a low concentration. When the gas concentration is higher than the threshold set in the system, the direct absorption detection technique was switched to automatically. Experimental results show that, the measurement error is less than ±0.06% in the range of 0~5% and less than ±6% of the actual value in the range of 5~100%, and the response time is less than 15 s, which meets the requirements of the mine measurement in practice.
参考文献

[1] 邓广福.基于可调谐激光光谱的矿井瓦斯气体传感系统研究[D].长春:吉林大学, 2008.

    DENG Guang-fu. Research on system of gas sensor used in mine based on TDLAS[D]. Changchun: Jilin University, 2008.

[2] 刘永平, 王霞, 李帅帅, 等. 基于红外技术的气体浓度检测方法研究[J].光子学报 2015, 44(1): 112002-112008.

    LIU Yong-ping, WANG Xia, LI Shuai-shuai, et al. Gas concentration detection method based on infrared absorption spectroscopy technology[J]. Acta Photonica Sinica, 2015, 44(1): 112002-112008.

[3] 王汝琳, 王咏涛. 红外检测技术[M]. 化学工业出版社, 2006.

[4] MASSIE C, STEWART G, MCGREGOR G, et al. Design of a portable optical sensor for methane gas detection[J]. Sensors and Actuators B: Chemical, 2006, 113(2): 830-836.

[5] 董凤忠, 阚瑞峰, 刘文清, 等. 可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用[J]. 量子电子学报, 2005, 22(3): 315-325.

    DONG Feng-zhong, KAN Rui-feng, LIU Wen-qing, et al. Tunable diode laser absorption spectroscopic technology and its application in air quality monitoring[J]. Chinese Journal of Quantum Electronics, 2005, 22(3): 315-325.

[6] WERLE P, D′AMATO F. Field laser applications in industry and research[J]. Applied Physics B: Lasers and Optics, 2011, 102(2): 251-253.

[7] WERLE P, SLEMR F, MAURER K, et al. Near-and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 2002, 37(2): 101-114.

[8] 阚瑞峰, 刘文清, 张玉钧, 等.基于可调谐激光吸收光谱的大气甲烷监测仪[J]. 光学学报, 2006, 26(1): 67-70.

    KAN Rui-feng, LIU Wen-qing, ZHANG Yu-jun, et al. Infrared absorption spectrometer of monitoring ambient methane[J]. Acta Optica Sinica, 2006, 26(1): 67-70.

[9] 陈家金, 赵伟雄, 高晓明, 等.基于柱面镜光学多通池的CH4高灵敏度探测[J]. 光学学报, 2015, 35(9): 0930003.

    CHEN Jia-jin, ZHAO Wei-xiong, GAO Xiao-ming, et al. Optical multipasscell based on two cylindrical mirrors for high sensitivity detection of methane[J]. Acta Optica Sinica, 2015, 35(9): 0930003.

[10] 王琢, 曹家年, 张可可, 等.光学式低浓度甲烷气体传感器的研究[J].光子学报, 2011, 40(2): 255-256.

    WANG Zhuo, CAO Jia-nian, ZHANG Ke-ke, et al. Optical low-concentration methane gas sensor[J]. Acta Photonica Sinica, 2011, 40(2): 255-256.

[11] 黄渐强, 翟冰, 叶玮琳, 等.基于波长调制技术的近红外甲烷监测仪[J].光电子·激光, 2014, 25(5):947-953.

    HUANG Jian-qiang, ZHAI Bing, YE Wei-lin, et al. Near-infrared CH4 detection device using wavelength-modulation technique[J]. Journal of Optoelectronics·Laser, 2014, 25(5): 947-953.

[12] 范松涛. 基于TDLAS技术的全量程甲烷检测系统[D]. 北京: 中国科学院大学, 2013.

    FAN Song-tao. Full range methane detection system based on TDLAS technology[D]. Beijing: The University of Chinese Academy of Sciences, 2013.

[13] REID J, LABRIE D. Second harmonic detection with tunable diode lasers-comparison of experiment and theory[J]. Applied Physics B, 1981, 26: 203-210.

[14] KLUCZYNSKI P, AXNER O. Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals[J]. Applied Optics, 1999, 38(27): 5803-5815.

[15] KLUCZYNSKI P, GUSTAFSSON J, LINDBERG A M, et al. Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(8): 1277-1354.

[16] 付丽, 党敬民, 苗春壮, 等.室温连续中红外量子级联激光器驱动电源的研制[J].光子学报, 2015, 44(12): 1213001.

    FU Li, DANG Jing-min, MIAO Chun-zhuang, et al. Development of driver for room-temperature continuous mid-infrared quantum cascade laser[J]. Acta Photonica Sinica, 2015, 44(12): 1213001.

庞涛, 王煜, 夏滑, 张志荣, 汤玉泉, 董凤忠. 基于TDLAS技术的全量程激光甲烷传感器[J]. 光子学报, 2016, 45(9): 0912003. PANG Tao, WANG Yu, XIA Hua, ZHANG Zhi-rong, TANG Yu-quan, DONG Feng-zhong. Full Scale Methane Sensor Based on TDLAS Technology[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0912003.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!