人工晶体学报, 2020, 49 (1): 162, 网络出版: 2020-06-15  

石墨烯及其衍生物在钙钛矿太阳能电池中的应用进展

Application Progress on Graphene and Derivatives in Perovskite Solar Cells
作者单位
1 兴义民族师范学院, 兴义 562400
2 河南省光伏材料重点实验室, 新乡 453007
引用该论文

王传坤, 聂奎营, 张星, 马恒. 石墨烯及其衍生物在钙钛矿太阳能电池中的应用进展[J]. 人工晶体学报, 2020, 49(1): 162.

WANG Chuankun, NIE Kuiying, ZHANG Xing, MA Heng. Application Progress on Graphene and Derivatives in Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(1): 162.

参考文献

[1] 王传坤,张 星,唐 颖,等.钙钛矿太阳能电池中ZnO电子传输层应用进展[J].人工晶体学报,2018,47(12):252-257.

[2] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051.

[3] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J].Nature Energy, 2018, 3(8): 682-689.

[4] 柴 磊,钟 敏.钙钛矿太阳能电池近期进展[J].物理学报,2016(23):12-26.

[5] Xiao J, Shi J, Liu H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J].Advanced Energy Materials,2015,5(8):1401943.

[6] Pei J, Feng K, Zhao X, et al. ZnO-based inverted hybrid solar cells using P3HT and spiro-OMeTAD with hole transporting property: layered or blended[J].Chemical Physics Letters,2019,729:79-83.

[7] Bruijnaers B J, Schiepers E, Weijtens C H L, et al. The effect of oxygen on the efficiency of planar p-i-n metal halide perovskite solar cells with a PEDOT∶PSS hole transport layer[J].Journal of Materials Chemistry A,2018,6(16):6882-6890.

[8] Zhang M D, Zhao D X, Chen L, et al. Structure-performance relationship on the asymmetric methoxy substituents of spiro-OMeTAD for perovskite solar cells[J].Solar Energy Materials and Solar Cells,2018,176:318-323.

[9] Zimmermann I, Gratia P, Martineau D, et al. Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer[J].Journal of Materials Chemistry A,2019,7(14):8073-8077.

[10] Chu L, Liu W, Qin Z, et al. Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes[J].Solar Energy Materials and Solar Cells,2018,178:164-169.

[11] Zhang H, Wang H, Ma M, et al. Application of compact TiO2 layer fabricated by pulsed laser deposition in organometal trihalide perovskite solar cells[J].Solar RRL,2018,2(8):1800097.

[12] Zheng D, Wang G, Huang W, et al. Combustion synthesized zinc oxide electron-transport layers for efficient and stable perovskite solar cells[J].Advanced Functional Materials, 2019,29(16):1900265.

[13] Liang Z, Bi Z, Gao K, et al. Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air[J].Applied Surface Science,2019,463:939-946.

[14] Noh M F M, Arzaee N A, Safaei J, et al. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells[J].Journal of Alloys and Compounds,2019,773:997-1008.

[15] Li X, Liu Y, Eze V O, et al. Amorphous nanoporous WOx modification for stability enhancement and hysteresis reduction in TiO2-based perovskite solar cells[J].Solar Energy Materials and Solar Cells,2019,196:157-166.

[16] Sung H, Ahn N, Jang M S, et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency[J].Advanced Energy Materials,2016,6(3):1501873.

[17] Kim S, Lee H S, Kim J M, et al. Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes[J].Journal of Alloys and Compounds,2018,744:404-411.

[18] Jang C W, Kim J M, Choi S H. Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode[J].Journal of Alloys and Compounds,2019,775:905-911.

[19] Heo J H, Shin D H, Kim S, et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes[J].Chemical Engineering Journal,2017,323:153-159.

[20] Hadadian M, Correa-Baena J P, Goharshadi E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation[J].Advanced materials,2016,28(39):8681-8686.

[21] Agresti A, Pescetelli S, Cinà L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J].Advanced Functional Materials,2016,26(16):2686-2694.

[22] Biccari F, Gabelloni F, Burzi E, et al. Graphene-based electron transport layers in perovskite solar cells:a step-up for an efficient carrier collection[J].Advanced Energy Materials,2017,7(22):1701349.

[23] Tavakoli M M, Tavakoli R, Yadav P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells[J].Journal of Materials Chemistry A,2019,7(2):679-686.

[24] Agresti A, Pescetelli S, Taheri B, et al. Graphene-perovskite solar cells exceed 18% efficiency: a stability study[J].Chem.Sus.Chem,2016,9(18):2609-2619.

[25] Nouri E, Mohammadi M R, Xu Z X, et al. Improvement of the photovoltaic parameters of perovskite polar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter[J].Physical Chemistry Chemical Physics,2018,20(4):2388-2395.

[26] Zhao X, Tao L, Li H, et al. Efficient planar perovskite solar cells with improved Fill factor via interface engineering with graphene[J].Nano letters,2018,18(4):2442-2449.

[27] Kakavelakis G, Maksudov T, Konios D, et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer[J].Advanced Energy Materials,2017,7(7):1602120.

[28] Palma A L, Cinà L, Pescetelli S, et al. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells[J].Nano Energy,2016,22:349-360.

[29] Li H, Tao L, Huang F, et al. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer[J].ACS Applied Materials & Interfaces,2017,9(44):38967-38976.

[30] Lee D Y, Na S I, Kim S S. Graphene oxide/PEDOT∶PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells[J].Nanoscale,2016,8(3): 1513-1522.

[31] Kim J M, Jang C W, Kim J H, et al. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells[J].Applied Surface Science,2018,455:1131-1136.

[32] Li X, Tong T, Wu Q, et al. Unique seamlessly bonded CNT@ graphene hybrid nanostructure introduced in an interlayer for efficient and stable perovskite solar cells[J].Advanced Functional Materials,2018,28(32):1800475.

[33] Xie J, Huang K, Yu X, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J].Acs Nano,2017,11(9):9176-9182.

[34] Zhou Y, Yang S, Yin X, et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics[J].Journal of Materials Chemistry A,2019,7(4):1878-1888.

[35] Bian H, Wang Q, Yang S, et al. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%[J]. Journal of Materials Chemistry A,2019,7(10):5740-5747.

王传坤, 聂奎营, 张星, 马恒. 石墨烯及其衍生物在钙钛矿太阳能电池中的应用进展[J]. 人工晶体学报, 2020, 49(1): 162. WANG Chuankun, NIE Kuiying, ZHANG Xing, MA Heng. Application Progress on Graphene and Derivatives in Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(1): 162.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!