人工晶体学报, 2020, 49 (1): 162, 网络出版: 2020-06-15  

石墨烯及其衍生物在钙钛矿太阳能电池中的应用进展

Application Progress on Graphene and Derivatives in Perovskite Solar Cells
作者单位
1 兴义民族师范学院, 兴义 562400
2 河南省光伏材料重点实验室, 新乡 453007
摘要
石墨烯及其衍生物具有优异的光学、电学和柔韧性等优越性能, 已经应用在钙钛矿太阳能电池中。通过添加石墨烯或者石墨烯衍生物能够提高器件的稳 定性和光电转化效率。本文主要介绍石墨烯和衍生物在钙钛矿太阳能电池中的应用进展, 通过探索石墨烯及其衍生物在钙钛矿太阳能电池中的应用, 为未来开 发高性能和高稳定性的器件作参考。
Abstract
Graphene and its derivatives have been used in perovskite solar cells because of their excellent optical, electrical and flexible properties. The stability and photoelectric conversion efficiency of devices can be improved by adding graphene or graphene derivatives. This paper mainly introduces the application progress of graphene and its derivatives in perovskite solar cells. It may provide reference for the future to develop high performance and high stability devices by exploring the application of graphene and its derivatives in perovskite solar cells.
参考文献

[1] 王传坤,张 星,唐 颖,等.钙钛矿太阳能电池中ZnO电子传输层应用进展[J].人工晶体学报,2018,47(12):252-257.

[2] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131(17):6050-6051.

[3] Jeon N J, Na H, Jung E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J].Nature Energy, 2018, 3(8): 682-689.

[4] 柴 磊,钟 敏.钙钛矿太阳能电池近期进展[J].物理学报,2016(23):12-26.

[5] Xiao J, Shi J, Liu H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J].Advanced Energy Materials,2015,5(8):1401943.

[6] Pei J, Feng K, Zhao X, et al. ZnO-based inverted hybrid solar cells using P3HT and spiro-OMeTAD with hole transporting property: layered or blended[J].Chemical Physics Letters,2019,729:79-83.

[7] Bruijnaers B J, Schiepers E, Weijtens C H L, et al. The effect of oxygen on the efficiency of planar p-i-n metal halide perovskite solar cells with a PEDOT∶PSS hole transport layer[J].Journal of Materials Chemistry A,2018,6(16):6882-6890.

[8] Zhang M D, Zhao D X, Chen L, et al. Structure-performance relationship on the asymmetric methoxy substituents of spiro-OMeTAD for perovskite solar cells[J].Solar Energy Materials and Solar Cells,2018,176:318-323.

[9] Zimmermann I, Gratia P, Martineau D, et al. Improved efficiency and reduced hysteresis in ultra-stable fully printable mesoscopic perovskite solar cells through incorporation of CuSCN into the perovskite layer[J].Journal of Materials Chemistry A,2019,7(14):8073-8077.

[10] Chu L, Liu W, Qin Z, et al. Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes[J].Solar Energy Materials and Solar Cells,2018,178:164-169.

[11] Zhang H, Wang H, Ma M, et al. Application of compact TiO2 layer fabricated by pulsed laser deposition in organometal trihalide perovskite solar cells[J].Solar RRL,2018,2(8):1800097.

[12] Zheng D, Wang G, Huang W, et al. Combustion synthesized zinc oxide electron-transport layers for efficient and stable perovskite solar cells[J].Advanced Functional Materials, 2019,29(16):1900265.

[13] Liang Z, Bi Z, Gao K, et al. Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air[J].Applied Surface Science,2019,463:939-946.

[14] Noh M F M, Arzaee N A, Safaei J, et al. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells[J].Journal of Alloys and Compounds,2019,773:997-1008.

[15] Li X, Liu Y, Eze V O, et al. Amorphous nanoporous WOx modification for stability enhancement and hysteresis reduction in TiO2-based perovskite solar cells[J].Solar Energy Materials and Solar Cells,2019,196:157-166.

[16] Sung H, Ahn N, Jang M S, et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency[J].Advanced Energy Materials,2016,6(3):1501873.

[17] Kim S, Lee H S, Kim J M, et al. Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes[J].Journal of Alloys and Compounds,2018,744:404-411.

[18] Jang C W, Kim J M, Choi S H. Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode[J].Journal of Alloys and Compounds,2019,775:905-911.

[19] Heo J H, Shin D H, Kim S, et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes[J].Chemical Engineering Journal,2017,323:153-159.

[20] Hadadian M, Correa-Baena J P, Goharshadi E K, et al. Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation[J].Advanced materials,2016,28(39):8681-8686.

[21] Agresti A, Pescetelli S, Cinà L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J].Advanced Functional Materials,2016,26(16):2686-2694.

[22] Biccari F, Gabelloni F, Burzi E, et al. Graphene-based electron transport layers in perovskite solar cells:a step-up for an efficient carrier collection[J].Advanced Energy Materials,2017,7(22):1701349.

[23] Tavakoli M M, Tavakoli R, Yadav P, et al. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells[J].Journal of Materials Chemistry A,2019,7(2):679-686.

[24] Agresti A, Pescetelli S, Taheri B, et al. Graphene-perovskite solar cells exceed 18% efficiency: a stability study[J].Chem.Sus.Chem,2016,9(18):2609-2619.

[25] Nouri E, Mohammadi M R, Xu Z X, et al. Improvement of the photovoltaic parameters of perovskite polar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter[J].Physical Chemistry Chemical Physics,2018,20(4):2388-2395.

[26] Zhao X, Tao L, Li H, et al. Efficient planar perovskite solar cells with improved Fill factor via interface engineering with graphene[J].Nano letters,2018,18(4):2442-2449.

[27] Kakavelakis G, Maksudov T, Konios D, et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer[J].Advanced Energy Materials,2017,7(7):1602120.

[28] Palma A L, Cinà L, Pescetelli S, et al. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells[J].Nano Energy,2016,22:349-360.

[29] Li H, Tao L, Huang F, et al. Enhancing efficiency of perovskite solar cells via surface passivation with graphene oxide interlayer[J].ACS Applied Materials & Interfaces,2017,9(44):38967-38976.

[30] Lee D Y, Na S I, Kim S S. Graphene oxide/PEDOT∶PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells[J].Nanoscale,2016,8(3): 1513-1522.

[31] Kim J M, Jang C W, Kim J H, et al. Use of AuCl3-doped graphene as a protecting layer for enhancing the stabilities of inverted perovskite solar cells[J].Applied Surface Science,2018,455:1131-1136.

[32] Li X, Tong T, Wu Q, et al. Unique seamlessly bonded CNT@ graphene hybrid nanostructure introduced in an interlayer for efficient and stable perovskite solar cells[J].Advanced Functional Materials,2018,28(32):1800475.

[33] Xie J, Huang K, Yu X, et al. Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells[J].Acs Nano,2017,11(9):9176-9182.

[34] Zhou Y, Yang S, Yin X, et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics[J].Journal of Materials Chemistry A,2019,7(4):1878-1888.

[35] Bian H, Wang Q, Yang S, et al. Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%[J]. Journal of Materials Chemistry A,2019,7(10):5740-5747.

王传坤, 聂奎营, 张星, 马恒. 石墨烯及其衍生物在钙钛矿太阳能电池中的应用进展[J]. 人工晶体学报, 2020, 49(1): 162. WANG Chuankun, NIE Kuiying, ZHANG Xing, MA Heng. Application Progress on Graphene and Derivatives in Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(1): 162.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!