无机材料学报, 2021, 36 (1): 25, 网络出版: 2021-01-21   

回归自然: 人造岩石固化核素的思考与进展 下载: 600次

Radionuclides from Nature to Nature: Recent Progress in Immobilization of High Level Nuclear Wastes in SYNROC
作者单位
1 西南科技大学 核废物与环境安全省部共建协同创新中心, 绵阳 621010
2 西华师范大学 物理与空间科学学院, 南充 637002
3 四川轻化工大学 材料科学与工程学院, 自贡 643000
引用该论文

段涛, 丁艺, 罗世淋, 张胜泰, 刘建. 回归自然: 人造岩石固化核素的思考与进展[J]. 无机材料学报, 2021, 36(1): 25.

Tao DUAN, Yi DING, Shilin LUO, Shengtai ZHANG, Jian LIU. Radionuclides from Nature to Nature: Recent Progress in Immobilization of High Level Nuclear Wastes in SYNROC[J]. Journal of Inorganic Materials, 2021, 36(1): 25.

参考文献

[1] HATCH LP. Ultimate disposal of radioactive wastes. Am. Sci., 1953,41(3):410-421.

[2] RINGWOODA, KESSONS, WAREN,et al. Immobilisation of high level nuclear reactor wastes in SYNROC. Nature, 1979,278(5701):219-223.

[3] SICKAFUS KE, MINERVINIL, GRIMES RW,et al. Radiation tolerance of complex oxides. Science, 2000,289(5480):748-751.

[4] RAKZ, EWING RC, BECKERU. Ferric garnet matrices for immobilization of actinides. J. Nucl. Mater., 2013,436(1/2/3):1-7.

[5] CLARKE DR. Ceramic materials for the immobilization of nuclear waste. Annu. Rev. Mater. Sci., 1983,13(1):191-218.

[6] ROBERT L EJ. Radioactive Waste Management. Annu. Rev. Part Sci., 1990,40:79-112.

[7] MONTEL JM. Minerals and design of new waste forms for conditioning nuclear waste. Cr. Geosci., 2011,343(2-3):230-236.

[8] ZUR LOYE HC, BESMANNT, AMOROSOJ,et al. Hierarchical materials as tailored nuclear waste forms: a perspective. Chem Mater., 2018,30(14):4475-4488.

[9] MORRISONG, SMITH MD, ZUR LOYE HC. Understanding the formation of salt-inclusion phases: an enhanced flux growth method for the targeted synthesis of salt-inclusion cesium halide uranyl silicates. J. Am. Chem. Soc., 2016,138(22):7121-7129

[10] BURNS PC, EWING RC, NAVROTSKYA. Nuclear fuel in a reactor accident. Science, 2012,335:1184-1188

[11] 卢喜瑞, 董发勤, 段涛. 钆锆烧绿石固化錒系核素机理及稳定性. 北京: 科学出版社, 2016.

[12] 顾忠茂. 核废物处理技术. 北京: 原子能科学出版社, 2009.

[13] ORLOVA AI, OJOVAN MI. Ceramic mineral waste-forms for nuclear waste immobilization. Materials, 2019,12:2638.

[14] PROUSTV, JEANNINR, WHITE FD,et al. Tailored perovskite waste forms for plutonium trapping. Inorg Chem., 2019,58(5):3026-3032.

[15] FINKELDEIS, STENNETT MC, KOWALSKI PM,et al. Insights into the fabrication and structure of plutonium pyrochlores. J Mater. Chem. A, 2020,8:2387-2403

[16] ADEL, MESBAH, NICOLAS,et al. Incorporation of thorium in the zircon structure type through the Th1-xErx(SiO4)1-x, 2016,55:11273-11282.

[17] LI YH, WANG YQ, ZHOUM,et al. Light ion irradiation effects on stuffed Lu2(Ti2. xLux)O7-x/2 (x=0, 0.4 and 0.67) structures Nucl. Instrum. Meth. B, 2011,269(18):2001-2005.

[18] YANG DY, XU CP, FU EG, , et al. Structure. Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2-xErx)O7-x/2(x=0-0.667). Nucl. Instrum. Meth. B, 2015, 356-357:69-74.

[19] 李玉红, 许春萍. Ne离子束辐照引起Gd2Ti2O7烧绿石体积肿胀效应研究. 原子核物理评论, 2011(3):68-72.

[20] XUM, WUY, WEIY. Stable solidification of silica-based ammonium molybdophosphate absorbing cesium using allophane: mechenical property and leaching studies. J. Radioanal. Nucl. Ch., 2018,316:1313-1321.

[21] WUY, XUM, WEIY,et al. Stable solidification of silica-based ammonium molybdophosphate in ceramic matrices and its cesium- leaching properties. Chem Lett., 2018,47(2):179-182.

[22] DINGY, LI YJ, JIANG ZD,et al. Phase evolution and chemical stability of the Nd2O3-ZrO2-SiO2 system synthesized by a novel hydrothermal-assisted Sol-Gel process. J Nucl. Mater., 2018,510:10-18.

[23] LIS, YANGX, LIUJ,et al. First-principles calculations and experiments for Ce 4+ effects on structure and chemical stabilities of Zr1-xCexSiO4. J. Nucl. Mater., 2019,514:276-283.

[24] LUX, SHUX, CHENS,et al. Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms. J Hazard Mater., 2018,357:424-430.

[25] 张魁宝, 冠军, 尹丹, . 钙钛锆石的自蔓延高温合成与热力学分析. 原子能科学技术, 2016,50(3):418-423.

[26] HUANGY, ZHANGH, ZHOUX,et al. Synthesis and microstructure of fluorapatite-type Ca10-2xSmxNax(PO4)6F2 solid solutions for immobilization of trivalent minor actinide. J Nucl. Mater., 2017,485:105-112.

[27] YANG JW, TANG BL, LUO SG. Immobilization of simulated actinides in pyrochlore-rich synroc. Journal of Nuclear & Radiochemistry, 2000,22(3):178-183.

[28] 张华, 杨建文, 李宝军, . 富烧绿石在模拟处置条件下的浸出行为研究. 中国原子能科学研究院年报, 2004,26(2):65-70.

[29] 朱鑫璋, 罗上庚, 汤宝龙, . 富钙钛锆石型人造岩石固化模拟锕系废物研究(Ⅰ). 核科学与工程, 1999(2):182-186.

[30] 周慧, 张传智, 李宝军, . 人造岩石固化模拟锝核素废物研究[C]// 第七届全国核化学与放射化学学术讨论会论文摘要集. 2005.

[31] ZHAO XF, TENG YC, YANGH,et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering. Ceram Int., 2015,41(9):11062-11068.

[32] TUH, DUANT, DINGY,et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave. Mater Lett., 2014,131:171-173.

[33] BARINOVA TV, PODBOLOTOV KB, BOROVINSKAYA IP,et al. Self-propagating high-temperature synthesis of ceramic matrices for immobilization of actinide-containing wastes. Radiochemistry, 2014,56(5):554-559.

[34] WANGL, SHUA XY, YIA FC,et al. Rapid fabrication and phase transition of Nd and Ce co-doped Gd2Zr2O7 ceramics by SPS. J Eur. Ceram. Soc., 2018,38(7):2863-2870.

[35] LIU XF, NINAF, MARKUSA. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev., 2013,42:8237-8265.

[36] APURVD, ROBERTV, OLIVIERG,et al. Molten salt shielded synthesis of oxidation prone materials in air. Nat Mater., 2019,18:465-470.

[37] LI YB, SHAOH, LIN ZF,et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater., 2020, DOI: .

[38] HU ZM, XIAOX, JIN HY,et al. Rapid mass production of two-dimensional metal oxides and hydroxides. via the molten salts method. Nat Commun., 2017,8:15630-15638.

[39] WU YJ, HONG RY, WANG LS,et al. Molten-salt synthesis and characterization of Bi-substituted yttrium garnet nanoparticles. J Alloys Compd., 2009,481(1-2):96-99.

[40] MATTHEWR. GILBERT. Molten salt synthesis of titanate pyrochlore waste-forms. Ceram. Int., 2016,42(4):5263-5270.

[41] HAND ML, STENNETT MC, HYATT NC. Rapid low temperature synthesis of a titanate pyrochlore by molten salt mediated reaction. J. Euro. Ceram. Soc., 2012,32(12):3211-3219.

[42] ADELM, STEPHANIES, NICOLASC,et al. Coffinite, USiO4, is abundant in nature: so why is it so difficult to synthesize. Inorg Chem., 2015,54(14):6687-6696.

[43] WEBER WJ. Self-radiation damage and recovery in Pu-doped zircon. Radiat. Eff. Defec. S, 1991,115(4):341-349.

[44] BURAKOV BE, ANDERSON EB, ROVSHA VS, et al.Synthesis of Zircon for Immobilization of Actinides.MRS Proceedings: Cambridge University Press, 1995,412:33.

[45] SZENKNECTS, COSTIN DT, CLAVIERN,et al. From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO4. Inorg Chem., 2013,52(12):6957-6968.

[46] PROUSTV, JEANNINR, WHITE FD,et al. Tailored perovskite waste forms for plutonium trapping. Inorg Chem., 2019,58(5):3026-3032.

[47] DINGY, DANH, LI JJ,et al. Structure evolution and aqueous durability of the Nd2O3-CeO2-ZrO2-SiO2 system synthesized by hydrothermal-assisted Sol-Gel route: a potential route for preparing ceramics waste forms. J Nucl. Mater., 2019,519:217-228.

[48] WANGC, PINGW, BAIQ,et al. A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020,368:521-526.

[49] LUF, YAOT, XUJ,et al. Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling. RSC Advances, 2014,4(73):38718.

[50] CAOC, CHONGS, THIRIONL,et al. Wet chemical synthesis of apatite-based waste forms-a novel room temperature method for the immobilization of radioactive iodine. J Mater. Chem. A, 2017,5(27):14331-14342.

[51] HASSAN MU, RYU HJ. Cold sintering and durability of iodate- substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine. J. Nucl. Mater., 2019,514:84-89.

[52] YANG JH, PARK HS, AHN DH,et al. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15. J Nucl. Mater., 2016,480:150-158.

[53] MINERVINIL, GRIMES RW, SICKAFUS KE,et al. Disorder in pyrochlore oxides. J. Am. Ceram. Soc., 2004,83(8):1873-1878.

[54] LIANJ, HELEAN KB, KENNEDY BJ,et al. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation. J. Phys. Chem. B, 2006,110(5):2343-2350.

[55] TUH, DUANT, DINGY, LU XR,et al. Phase and micro- structural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process. Ceram. Int., 2015,6(41):8046-8050.

[56] DINGY, LONG XG, PENG SM,et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides. Ceram. Int., 2015,487:279-304.

[57] CHAPMAN NA, MCKINLEY. The geological disposal of nuclear waste. London: Wiley&Sons, 1999.

[58] STRACHAND, TURCOTTER, BARNESB. MCC-1: A standard leach test for nuclear waste forms. Nucl. Technol., 1982,56(2):306-312.

[59] JANTZEN CM, BIBLER NE, BEAM DC, et al. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3. Technical Report, Westinghouse Savannah River Co., Aiken, SC(United States), 1994.

[60] SINGHD, MANDALIKAV, PARULEKARS,et al. Magnesium potassium phosphate ceramic for 99Tc immobilization. J. Nucl. Mater., 2006,348(3):272-282.

[61] GRIFFITH CS, SEBESTAF, HANNA JV,et al. Tungsten bronze- based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate-polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics. J. Nucl. Mater., 2006,358(2/3):151-163.

[62] FANL, SHUX, LUX,et al. Phase structure and aqueous stability of TRPO waste incorporation into Gd2Zr2O7 pyrochlore. Ceram. Int., 2015,41(9):11741-11747.

[63] LI SY, LIUJ, YANGX,et al. Effect of phase evolution and acidity on the chemical stability of Zr1-xNdxSiO4-x/2 ceramics. Ceram. Int., 2019,45(3):3052-3058.

[64] NIKOLAEVA EV, BURAKOV BE. Investigation of Pu-doped ceramics using modified MCC-1 leach test. Mater. Res. Soc. Symp. Proc., 2002,713:429-432.

[65] WEBER WJ, WANGL, HESS NJ,et al. Radiation effects in nuclear waste materials. OSTI Tech. Rep., 1998,32(1-4):453-454.

[66] LI YH, WANG YQ, VALDEZJA,et al. Swelling efects in Y2Ti2O7 pyrochlore irradiated with 400 keV Ne 2+ ions. Nucl. Instrum. Meth. B, 2012,274:182-187.

[67] LI YH, WANG YQ, XU CP,et al. Microstructural evolution of the pyrochlore compound Er2Ti2O7 induced by light ion irradiations. Nucl. Instrum. Meth. B, 2012,286:218-222.

[68] SICKAFUS KE, GRIMES RW, VALDEZJA,et al. Radiation induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater., 2007,6(3):217-223.

[69] UTSUNOMIYAS, YUDINTSEVS, EWINGR. Radiation effects in ferrate garnet. J. Nucl. Mater., 2005,336(2/3):251-260.

[70] DINGY, JIANG ZD, LI YJ,et al. Effect of alpha-particles irradIation on the phase evolution and chemical stability of Nd-doped zircon ceramics. J. Alloys Compd., 2017,729:483-491.

[71] YANG XY, WANG SA, LUY,et al. Structures and energetics of point defects with charge states in zircon: a first-principles study. J. Alloys Compd., 2018,759:60-69.

[72] FINCH RJ, HANCHAR JM. Structure and chemistry of zircon and zircon-group minerals. Rev. Miner. Geochem., 2003,53:1-25.

[73] GALUSKINA IO, GALUSKIN EV, ARMBRUSTERT, et al. Bitikleite-(SnAl) and bitikleite-, 2010,95(7):959-967.

[74] 卢海萍, 王汝成, 陆现彩. 锆石的结构与化学稳定性: 核废料处置矿物类比物研究. 地学前缘, 2003,10(2):403-409.

段涛, 丁艺, 罗世淋, 张胜泰, 刘建. 回归自然: 人造岩石固化核素的思考与进展[J]. 无机材料学报, 2021, 36(1): 25. Tao DUAN, Yi DING, Shilin LUO, Shengtai ZHANG, Jian LIU. Radionuclides from Nature to Nature: Recent Progress in Immobilization of High Level Nuclear Wastes in SYNROC[J]. Journal of Inorganic Materials, 2021, 36(1): 25.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!