强激光与粒子束, 2016, 28 (4): 045007, 网络出版: 2016-04-01  

水中脉冲放电金属电极烧蚀机理

Erosion mechanism research of metal electrode under pulse current in water
作者单位
1 华中科技大学 强电磁工程与新技术国家重点实验室, 武汉 430074
2 广西机电职业技术学院 电气工程系, 南宁 530007
摘要
采用板-板电极,在放电间隙距离为2 mm、放电电流峰值为22 kA条件下,对黄铜、钨铜电极的烧蚀特性进行了对比研究。利用高精度天平测量放电过程中的电极质量损失,分别获取了阴极、阳极及总的平均烧蚀速率。通过放电后电极表面微观形貌、微观元素组成的分析及液体中金属离子的含量分析,对水中脉冲放电金属电极的烧蚀机理进行了探讨。结果表明,水中脉冲放电时,钨铜电极的抗烧蚀性能明显高于黄铜电极。黄铜电极的主要烧蚀是以中心的大量孔洞及其边缘的波纹结构为表现形式的液体金属的溅射; 钨铜电极的突出物及较平整的表面暗示了气相侵蚀的作用。以电弧的焦耳热效应为催化剂,钨铜与水的电化学反应更为强烈,因此电化学腐蚀是水中放电电极烧蚀的形式之一。
Abstract
The pattern of plate-plate electrodes with the gap of 2 mm and the discharge current peak of 22 kA is used to compare and research the erosion characteristics of the brass and W-Cu electrodes. The mass loss of the eroded electrode during the pulsed discharge process can be obtained by a high precision balance. Then, the erosion rates of the anode, cathode and total average erosion rates of the electrodes can be calculated, respectively. The micro morphology analysis about the surface of the eroded electrode and the comparison about the content of the metal ions will help to investigate the erosion mechanism of metal electrodes in water. The results show that anti-erosion performance of the W-Cu is obviously better than that of the brass under pulsed discharge in water. For the brass electrodes, large amounts of holes and craters in the central area and the wave structure in the edge area indicate that sputtering of the molten metal is the major erosion form while the unique protuberances and relatively smooth surface of the W-Cu electrode imply the action of the vapor-phase erosion. When regarding Joule heating effect as the powerful catalyst, the electrochemical reaction of the W-Cu behaves more fiercely than that of the brass. Therefore, it’s unreasonable to neglect the influences of the electrochemical corrosion on the eroded surface when the pulsed discharge occurs in water.
参考文献

[1] 陈维青, 曾正中, 邹丽丽, 等. 100 kA微秒级气体火花开关电极材料熔蚀研究[J]. 强激光与粒子束, 2004, 16(2): 239-242. (Chen Weiqing, Zeng Zhengzhong, Zou Lili, et al. Selection of gas spark gaps electrode material under microsecond 100 kA current pulse. High Power Laser and Particle Beams, 2004, 16(2): 239-242)

[2] Kumar P D, Kumar S, Thakur R, et al. Erosion and lifetime evaluation of molybdenum electrode under high energy impulse current[J]. IEEE Trans Plasma Sci, 2011, 39(4): 1180-1186.

[3] 谢昌明, 谈效华, 杜涛, 等. 气体火花开关电极烧蚀研究[J]. 强激光与粒子束, 2014, 26: 015003. (Xie Changming, Tan Xiaohua, Du Tao, et al. Electrode erosion research of gas spark gap. High Power Laser and Particle Beams, 2014, 26: 015003)

[4] Koutsoubis J M, MacGregor S J. Electrode erosion and lifetime performance of a high repetition rate, triggered, corona-stabilized switch in air[J]. Journal of Applied Physics, 2000, 33(9): 1093-1103.

[5] 吴佳玮, 丁卫东, 韩若愚, 等. 密封腔体、大电流条件下重复频率长寿命气体开关的烧蚀特性[J]. 高电压技术, 2014, 40(10): 3235-3242. (Wu Jiawei, Ding Weidong, Han Ruoyu, et al. Electrode erosion of repetitive long-life gas spark switch with large current load in air tight chamber. High Voltage Engineering, 2014, 40(10): 3235-3242)

[6] 白峰, 邱毓昌, 姜惟. 气体花火开关电极材料的冲击电流侵蚀特性[J]. 电工技术学报, 2001, 16(4): 76-79. (Bai Feng, Qiu Yuchang, Jiang Wei. Erosion characteristics of the electrodes used for gas spark gap. Transactions of China Electro Technical Society, 2001, 16(4): 76-79)

[7] Wang H, Chang J, Tong X, et al. Study on the characteristics of the gas switch electrode erosion [J]. High Voltage Apparatus, 2011, 47(9): 6-11.

[8] 谢昌明, 尚绍环, 谈效华, 等. 高气压大电流放电条件下的电极烧蚀[J]. 强激光与粒子束, 2013, 25(9): 2181-2187. (Xie Changming, Shang Shaohuan, Tan Xiaohua, et al. Electrode erosion in high pressure and high current discharges. High Power Laser and Particle Beams, 2013, 25(9): 2181-2187)

[9] Claverie A, Deroy J, Boustie M, et al. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge[J]. Review Scientific Instruments, 2014, 85: 063701.

[10] Edward A. Experimental investigation of a high energy density, high pressure arc plasma[J]. Journal of Applied Physics, 1960, 31(2): 255-267.

[11] Masayuki S, Takashi O, Clements J S. Formation of chemical species and their effects on microorganisms using a pulsed high voltage discharge in water[J]. IEEE Trans Industry Applications, 1996, 32(1): 106-112.

[12] 刘强, 孙鹞鸿, 严萍, 等. 水中脉冲电晕放电的声学特性研究[J]. 高电压技术, 2007, 33(2): 59-61. (Liu Qiang, Sun Yaohong, Yan Ping, et al. Study on acoustic characteristics of pulsed corona discharge in water. High Voltage Engineering, 2007, 33(2): 59-61)

[13] Lukes P, Clupek M, Babicky V, et al. The catalytic role of tungsten electrode material in the plasma chemical activity of a pulsed corona discharge in water[J]. Plasma Sources Science and Technology, 2011, 20(3): 1-11.

[14] Watson A, Donaldson A L, Ikuta K, et al. Mechanism of electrode surface damage and material removal in high current discharges[J]. IEEE Trans Magnet, 1986, 22(6): 1799-1803.

[15] 曾晗, 林福昌, 蔡礼, 等. 石墨电极烧蚀机理及实验[J]. 电工技术学报, 2013, 28(1): 43-49. (Zeng Han, Lin Fuchang, Cai Li, et al. Mechanism and experiment of graphite electrode erosion. Transactions of China Electro Technical Society, 2013, 28(1): 43-49)

[16] 何孟兵, 贺臣, 李劲. 气体火花开关电极的烧蚀研究[J]. 高电压技术, 2004, 30(10): 54-55. (He Mengbing, He Chen, Li Jin. Research on erosion of gas spark switch electrodes. High Voltage Engineering, 2004, 30(10): 54-55)

[17] Allagui H, Mekki M, Javoronkov M. Electrodes' erosion in a liquid medium[J]. IEEE Trans Plasma Sci, 2002, 3(2): 1289-1294.

[18] Gordon L B, Kristiansen M, Hagler M O, et al. Material studies in a high energy spark gap[J]. IEEE Trans Plasma Sci, 1982, 10(4): 286-293.

[19] Donaldson A L, Hagler M O, Kristiansen M. Electrode erosion phenomena in a high-energy pulsed discharge[J]. IEEE Trans Plasma Sci, 1984, 12(1): 28-38.

李志远, 刘毅, 韩毅博, 罗启平, 林福昌. 水中脉冲放电金属电极烧蚀机理[J]. 强激光与粒子束, 2016, 28(4): 045007. Li Zhiyuan, Liu Yi, Han Yibo, Luo Qiping, Lin Fuchang. Erosion mechanism research of metal electrode under pulse current in water[J]. High Power Laser and Particle Beams, 2016, 28(4): 045007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!