红外与毫米波学报, 2015, 34 (4): 471, 网络出版: 2015-10-22   

硅微纳结构及其在新型太阳电池中的应用

Micro-nano structures of silicon and their applications in novel solar cells
作者单位
1 华北电力大学, 北京 102206
2 云南省产品质量监督检验研究院, 云南 昆明 650000
3 北京有色金属研究总院, 北京 100088
摘要
综述了近年来各种硅微纳结构的特征和制备技术, 介绍了其在新型太阳电池中的应用现状与前景.首先, 阐述了硅微纳结构在传统p-n结、新型径向p-n结以及异质结太阳电池结构设计中的研究进展;其次, 从光吸收增强、表面修饰及钝化的角度, 分析了硅微纳结构太阳电池的增效措施;最后, 提出了柔性硅微纳结构太阳电池开发的新思路.
Abstract
In this perspective, we reviewed the fabrication technologies of various silicon micro-nano structures and their applications in novel type of solar cells. The recent progress in the application of silicon micro-nano structures in traditional p-n junction solar cells, radial p-n junction solar cells and hetero-junction solar cells are discussed respectively. We then shown the recent efforts to improve the energy conversion efficiency of the solar cells with silicon micro-nano structures, including enhanced absorption of incident light, as well as surface modification and surface passivation of silicon micro-nano structures. Finally, brief overview and outlook are provided on the development of flexible silicon solar cells.
参考文献

[1] Green M A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution[J]. Progress in Photovoltaics: Research and Applications, 2009, 17(3): 183-189.

[2] Peng K Q, Lee S T. Silicon nanowires for photovoltaic solar energy conversion[J]. Advances Materials, 2011, 23(2):198-215.

[3] Bachtouli N, Aouida S, Laajimi R H, et al. Implications of alkaline solutions-induced etching on optical and minority carrier lifetime features of monocrystalline silicon[J]. Applied Surface Science, 2012, 258(22): 8889-8894.

[4] Chu A K, Wang J S, Tsai Z Y, et al. A simple and cost-effective approach for fabricating pyramids on crystalline silicon wafers[J]. Solar Energy Materials and Solar Cells. 2009, 93(8):1276-1280.

[5] Barrio R, Gonzalez N, Carabe J, et al. Gandia. Texturization of silicon wafers with Na2CO3 and Na2CO3/NaHCO3 solutions for heterojunction solar-cell applications[J]. Materials science in semiconductor processing, 2013, 16(1): 1-9.

[6] Su C L, Hsu C H, Lan K H, et al. Texturization of silicon wafers for solar cells by anisotropic etching with sodium silicate solutions[C]. International Conference on Renewable Energies and Power Quality (ICREPQ'12), Santiago de Compostela, Spain. 2012: 28-30.

[7] Papet P, Nichiporuk O, Kaminski A, et al. Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching[J]. Solar Energy Materials and Solar Cells. 2006, 90(15):2319-2328.

[8] Singh P K, Kumar R, Lal M, et al. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions[J]. Solar energy materials and solar cells, 2001, 70(1): 103-113.

[9] Peng K Q, Yan Y J, Gao S P,et al. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry[J]. Advance Materials. 2012, 14(16):1164-1166.

[10] Peng K Q, Lu A J, Zhang RQ, et al. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching [J]. Advanced Functional Materials, 2008, 18(19): 3026-3035.

[11] Tang J, Shi J, Zhou L. Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching [J]. Nano-Micro Letters, 2011, 3(2): 129-134.

[12] Megouda N, Hadjersi T, Piret G, et al. Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution [J]. Applied Surface Science, 2009, 255(12): 6210-6216.

[13] Zhu B, Li L J, Sun Q Q,et al. Formation of Cylindrical Nanoholes in Heavily Doped P-Type Si (100) Substrate via Pt Nanoparticles-Assisted Chemical Etching [J]. Advanced Materials Research, 2012, 535: 362-367.

[14] Huang Z P, Shimizu T, Senz S, et al. Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon [J]. The Journal of Physical Chemistry C, 2010, 114(24): 10683-10690.

[15] Zhang L D, Shen H L, Yue Z H, et al. Preparation of Low Reflective Microstructure at Multicrystal Silicon Surface by Ferric Nitrate Etching [J]. Applied Surface Science. 2013, 280(1):446-449.

[16] Tomioka H, Adachi S. Optical absorption, photoluminescence, and Raman scattering studies on Si nanowire arrays formed in Ag2SO4 HF H2O solution [J]. ECS Journal of Solid State Science and Technology, 2013, 2(6): P253-P258.

[17] Bai F, Li M C, Song D D, et al. Jiang and Y.F. Li. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature[J]. Journal of Solid State Chemistry. 2012, 196:596-600.

[18] Bai F, Li M C, Huang R, et al. Wafer-scale fabrication of uniform Si nanowire arrays using the Si wafer with UV/Ozone pretreatment[J]. Journal of Nanoparticles Research, 2013, 15: 1915.

[19] Jungkil K, Han H, H Y. et al. Au/Ag bilayered metal mesh as a Si etching catalyst for controlled fabrication of Si nanowires[J]. ACS Nano, 2011, 5(4): 3222-3229.

[20] Mikhael B, Elise B, Maeder X, et al. Laetitia. New silicon architectures by gold-assisted chemical etching[J]. ACS applied materials & interfaces, 2011, 3(10): 3866-3873.

[21] Zahedinejad M, Farimani S D, Khaje M, et al. Deep and vertical silicon bulk micromachining using metal assisted chemical etching[J]. Journal of Micromechanics and Microengineering, 2013, 23(5): 055015.

[22] Qi D P, Lu N, Xu H B, et al. Simple approach to wafer-scale self-cleaning antireflective silicon surface[J]. Langmuir. 2009, 25(14):7769-7772.

[23] Park K T, Guo Z Y, Um H D, et al. Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics[J]. Optics Express. 2011, 19(S1), A41-A50.

[24] Jung J Y, Guo Z Y, Jee S W, et al. A waferscale Si wire solar cell using radial and bulk p-n junctions[J]. Nanotechnology. 2010, 21(445303):1-7.

[25] Bai F, Li M C, Huang R, et al. Template-free fabrication of silicon micropillar/nanowire composite structure by one-step etching[J]. Nanoscale Research Letters, 2012, 7(1): 1-5.

[26] Zhao J, Wang A, Green M A. 24.5% Effciency silicon PERT Cells on MCZ substrates and 24.7% effciency PERL cells on FZ substrates[J].Prog. Photovolt: Res. Appl, 1999, 7(471): 144.

[27] Schultz O, Glunz S W, Willeke G P. Short communication: accelerated publication: Multicrystalline silicon solar cells exceeding 20% efficiency[J]. Progress in Photovoltaics: Research and Applications, 2004, 12(7): 553-558.

[28] Fang H, Li X D, Song S, et al. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications[J]. Nanotechnology, 2008, 19(25): 255703.

[29] Kayes B M, Atwater H A, Lewis N S. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells[J]. Journal of Applied Physics, 2005, 97(11): 114302-1-114302-11.

[30] Tian B, Lieber C M. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes[J]. Pure and applied chemistry. Chimie pure et appliquee, 2011, 83(12): 2153-2169.

[31] Kelzenberg M D, Turner-Evans D B, Putharm M C, et al. High-performance Si microwire photovoltaics[J]. Energy & Environmental Science. 2011, 4:866-871.

[32] Wang J, Singh N, Lo G Q, et al. Vertical nanowall array covered silicon solar cells[C]. 2012 International Conference on Solied-State and Integrated Circuit. 2012, IPCSIT vol. 32:1-5.

[33] Peng K Q, Wang X, Li L, et al. High-performance silicon nanohole solar cells[J]. Journal of the American Chemical Society. 2010, 132(20):6872-6873.

[34] Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 18-21.

[35] Shiu S C, Chao J J, Hung S C, et al. Morphology dependence of silicon nanowire/poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) heterojunction solar cells[J]. Chemistry of Materials, 2010, 22(10): 3108-3113.

[36] Bai F, Li M C, Huang R, et al. A one-step template-free approach to achieve tapered silicon nanowire arrays with controllable filling ratios for solar cell applications[J]. RSC Advances. 2014, 4:1794-.1798.

[37] Shen X J, Sun B Q, Liu D, et al. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture[J]. Journal of the American Chemical Society. 2011, 133(48):19408-19415.

[38] Yu P C, Tsai C Y, Chang J K, et al. 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering[J]. ACS Nano. 2013, DOI: 10.1021/nn403982b.

[39] Li X M, Zhu H W, Wang K L, et al. Graphene-on-silicon schottky junction solar cells[J]. Advanced Materials, 2010, 22(25): 2743-2748.

[40] Miao X C, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping[J]. Nano letters, 2012, 12(6): 2745-2750.

[41] Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting[J]. ACS Applied Materials & Interfaces, 2011, 3(3):721-725.

[42] Jia Y, Wei J Q, Wang K L, et al. Nanotube-silicon heterojunction solar cells[J]. Advanced Materials, 2008, 20(23): 4594-4598.

[43] Di J T, Yong Z Z, Zheng X H, et al. Aligned carbon nanotubes for high-efficiency schottky solar cells[J]. Small. 2013, 9(8):1367-1372.

[44] Cui K H, Chiba T, Omiya S, et al. Self-assembled microhoneycomb network of single-walled carbon nanotubes for solar cells[J]. The Journal of Physics Chemistry Letters. 2013, 4(15):2571-2576.

[45] Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy & Envirnmental Science. 2013, 6(1):108-115.

[46] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials. 2010, 9:205-213.

[47] Ozdemir B, Kulakci M, Turan R, et al. Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires[J]. Nanotechnology. 2011, 22(15):155606-1-155606-7.

[48] Kelzenberg M D, Boettcher S W, Petykiewicz J A, et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications[J]. Nature Materials. 2010, 9:239-244.

[49] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature. 1998, 391:667-669.

[50] Wang W, Wu S M, Reinhardt K, et al. Broadband light absorption enhancement in thin-film silicon solar cells[J]. Nano Letters. 2010, 10(6):2012-2018.

[51] Dai H, Li M C, Li Y F, et al. Effective light trapping enhancement by plasmonic Ag nanoparticles on silicon pyramid surface[J]. Optics Express. 2012, 20(S4):A503-A509.

[52] Zhang F T, Sun B Q, Song T, et al. Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures[J]. Chemistry of Materials. 2011, 23, 2084-2090.

[53] Liu K, Qu S C, Zhang X H, et al. Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles[J]. Nanoscale Research Letters. 2013, 8:88-94.

[54] Tsakalakos L, Balach J, Fronheiser J, et al. Silicon nanowire solar cells[J]. Applied Physices Letters. 2007, 91:233117-1.

[55] Huang J S, Hsiao C Y, Syn S J, et al. Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass[J]. Solar Energy Materials and Solar Cells. 2009, 93(5):621-624.

[56] Wang S, Weil B D, Li Y B, et al. Large-area free-standing ultrathin single-crystal silicon as processable materials[J]. Nano Letters. 2013, 13(9):4393-4398.

[57] Bai F, Li M C, Song D D, et al. Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer[J]. Applied Surface Science. 2013, 173:107-110.

白帆, 付鹏飞, 崔鹏, 黄睿, 李瑞科, 张志荣, 余航, 张妍, 宋丹丹, 李英峰, 姜冰, 李美成. 硅微纳结构及其在新型太阳电池中的应用[J]. 红外与毫米波学报, 2015, 34(4): 471. BAI Fan, FU Peng-Fei, CUI Peng, HUANG Rui, LI Rui-Ke, ZHANG Zhi-Rong, YU Hang, ZHANG Yan, SONG Dan-Dan, LI Ying-Feng, JIANG Bing1, LI Mei-Cheng. Micro-nano structures of silicon and their applications in novel solar cells[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 471.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!