中国激光, 2020, 47 (9): 0901003, 网络出版: 2020-09-16   

碳纳米管锁模全保偏掺铒光纤激光器的振动性能的研究 下载: 939次

Research on Vibration Performance of All-Polarization-Maintaining Erbium-Doped Mode-Locked Fiber Laser Based on Carbon Nanotube
作者单位
1 天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
2 北京空间飞行器总体设计部, 北京 100094
引用该论文

张亚静, 刘杰, 蔡娅雯, 刘久利, 宋有建, 胡明列. 碳纳米管锁模全保偏掺铒光纤激光器的振动性能的研究[J]. 中国激光, 2020, 47(9): 0901003.

Zhang Yajing, Liu Jie, Cai Yawen, Liu Jiuli, Song Youjian, Hu Minglie. Research on Vibration Performance of All-Polarization-Maintaining Erbium-Doped Mode-Locked Fiber Laser Based on Carbon Nanotube[J]. Chinese Journal of Lasers, 2020, 47(9): 0901003.

参考文献

[1] Sibbett W, Lagatsky A A. Brown C T A. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7): 6989-7001.

[2] 乔自文, 高炳荣, 陈岐岱, 等. 飞秒超快光谱技术及其互补使用[J]. 中国光学, 2014, 7(4): 588-599.

    Qiao Z W, Gao B R, Chen Q D, et al. Ultrafast spectroscopy techniques and their complementary usages[J]. Chinese Optics, 2014, 7(4): 588-599.

[3] 梅风华, 李超, 张玉鑫. 光谱成像技术在海域目标探测中的应用[J]. 中国光学, 2017, 10(6): 708-718.

    Mei F H, Li C, Zhang Y X. Application of spectral imaging technology in maritime target detection[J]. Chinese Optics, 2017, 10(6): 708-718.

[4] 程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53(11): 110004.

    Cheng Y, Guo Y L, Tang H, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110004.

[5] Hirooka T, Tokuhira K, Yoshida M, et al. 440 fs, 9.2 GHz regeneratively mode-locked erbium fiber laser with a combination of higher-order solitons and a SESAM saturable absorber[J]. Optics Express, 2016, 24(21): 24255-24264.

[6] Okhotnikov O G, Grudinin A B, Pessa M. Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications[J]. New Journal of Physics, 2004, 6(1): 177.

[7] Nishizawa N, Nozaki Y, Itoga E, et al. Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film[J]. Optics Express, 2011, 19(22): 21874-21879.

[8] Mou C, Sergeyev S, Rozhin A, et al. All-fiber polarization locked vector soliton laser using carbon nanotubes[J]. Optics Letters, 2011, 36(19): 3831-3833.

[9] 刘奂奂, 蒋巧, 宋伟, 等. L波段可切换双波长被动锁模光纤激光器[J]. 中国激光, 2019, 46(7): 0701007.

    Liu H H, Jiang Q, Song W, et al. L-band switchable dual-wavelength passively mode-locked fiber laser[J]. Chinese Journal of Lasers, 2019, 46(7): 0701007.

[10] Feng D J, Huang W Y, Ji P Y, et al. Erbium-doped fiber ring cavity pulsed laser based on graphene saturable absorber[J]. Optics and Precision Engineering, 2013, 21(5): 1097-1101.

[11] 汪光辉, 王志腾, 陈宇, 等. 基于石墨烯的被动锁模掺铒光纤孤子激光器[J]. 中国激光, 2012, 39(6): 0602003.

    Wang G H, Wang Z T, Chen Y, et al. Passively graphene mode-locked soliton erbium-doped fiber lasers[J]. Chinese Journal of Lasers, 2012, 39(6): 0602003.

[12] Wu G H, Takahashi M, Inaba H, et al. Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement[J]. Optics Letters, 2013, 38(12): 2140-2143.

[13] Wu G H, Takahashi M, Arai K, et al. Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs[J]. Scientific Reports, 2013, 3: 1894.

[14] 吴雪峰, 尹海亮, 李强. 飞秒激光加工碳纳米管薄膜实验研究[J]. 中国激光, 2019, 46(9): 0902002.

    Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 2019, 46(9): 0902002.

[15] 张芳腾, 聂兆刚, 邱建荣. 飞秒激光直写实现氧化锗玻璃内部光调制[J]. 中国激光, 2018, 45(12): 1202006.

    Zhang F T, Nie Z G, Qiu J R. Realization of optical modulation in germanium oxide glass by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2018, 45(12): 1202006.

[16] Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 2016, 3(4): 414-426.

[17] Adler F, Thorpe M J, Cossel K C, et al. Cavity-enhanced direct frequency comb spectroscopy: technology and applications[J]. Annual Review of Analytical Chemistry (Palo Alto, Calif.), 2010, 3: 175-205.

[18] Lammerzahl C, Dittus H, Peters A, et al. OPTIS: a satellite-based test of special and general relativity[J]. Classical and Quantum Gravity, 2001, 18(13): 2499-2508.

[19] Reinhardt S, Saathoff G, Buhr H, et al. Test of relativistic time dilation with fast optical atomic clocks at different velocities[J]. Nature Physics, 2007, 3(12): 861-864.

[20] Reigber C, Schmidt R, Flechtner F, et al. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S[J]. Journal of Geodynamics, 2005, 39(1): 1-10.

[21] Jentsch C, Müller T, Rasel E M, et al. HYPER: a satellite mission in fundamental physics based on high precision atom interferometry[J]. General Relativity and Gravitation, 2004, 36(10): 2197-2221.

[22] Fridlund C V M. Darwin-the infrared space interferometry mission[J]. ESA Bulletin, 2000, 103(3): 20-63.

[23] Fridlund M. Future space missions to search for terrestrial planets[J]. Strategies of Life Detection, 2008, 135(1-4): 355-369.

[24] Lee J, Lee K, Jang Y S, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014, 4: 5134.

[25] Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

[26] 池俊杰, 姜诗琦, 张琳, 等. 光纤激光器辐照性能实验研究[J]. 激光与光电子学进展, 2018, 55(6): 061406.

    Chi J J, Jiang S Q, Zhang L, et al. Experimental study on radiation performance of fiber lasers[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061406.

[27] 谌鸿伟, 陶蒙蒙, 赵海川, 等. γ射线作用下光纤激光器的功率特性及热效应分析[J]. 中国激光, 2020, 47(4): 0401004.

    Chen H W, Tao M M, Zhao H C, et al. Power characteristics and thermal effects of the gamma-ray radiated fiber lasers[J]. Chinese Journal of Lasers, 2020, 47(4): 0401004.

[28] Giorgetta FR, BaumannE, Nicholson JW, et al.Vibration immune fiber-laser frequency comb based on a polarization-maintaining figure-eight laser[C]∥2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference. 2-4 June 2009, Baltimore, MD, USA.New York: IEEE Press, 2009: 1- 2.

[29] Baumann E, Giorgetta F R, Nicholson J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640.

[30] Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 2014, 22(6): 6996-7006.

[31] Kim D H, Kwon D, Lee B, et al. Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3×3 coupler[J]. Optics Letters, 2019, 44(5): 1068-1071.

[32] HatiA, Nelson CW, Howe DA. Vibration sensitivity of optical components: a survey[C]∥2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings. 2-5 May 2011, San Francisco, CA, USA. New York: IEEE Press, 2011: 1- 4.

[33] Jr Thomes W J, LaRocca F V, Switzer R C, et al. Vibration performance comparison study on current fiber optic connector technologies[J]. Proceedings of SPIE, 2008, 7070: 70700A.

张亚静, 刘杰, 蔡娅雯, 刘久利, 宋有建, 胡明列. 碳纳米管锁模全保偏掺铒光纤激光器的振动性能的研究[J]. 中国激光, 2020, 47(9): 0901003. Zhang Yajing, Liu Jie, Cai Yawen, Liu Jiuli, Song Youjian, Hu Minglie. Research on Vibration Performance of All-Polarization-Maintaining Erbium-Doped Mode-Locked Fiber Laser Based on Carbon Nanotube[J]. Chinese Journal of Lasers, 2020, 47(9): 0901003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!