Chinese Optics Letters, 2019, 17 (10): 100012, Published Online: Oct. 15, 2019   

High-speed underwater wireless optical communications: from a perspective of advanced modulation formats [Invited] Download: 969次

Author Affiliations
1 Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
2 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Figures & Tables

Fig. 1. Schematic diagram of the general UWOC setup in a lab experiment. AWG: arbitrary waveform generator; EA: electrical amplifier; ATT: adjustable attenuator; DC: direct current; LD: laser diode; APD: avalanche photodiode; DSA: digital serial analyzer; Tx-DSP: digital signal processing at the transmitter; Rx-DSP: digital signal processing at the receiver.

下载图片 查看原文

Fig. 2. Received optical power (ROP) and SNR versus transmission distance under tap water. w/: with; w/o: without; NLE: nonlinear equalization[39].

下载图片 查看原文

Fig. 3. (a) Received SNR versus the volume of added Maalox suspension after a 1 m underwater transmission. (b) Attenuation coefficient versus volume of the added Maalox suspension. (c)–(f) The snapshots of the optical beam passing through water of different turbidities which represent (c) “tap water”, (d) “clear ocean”, (e) “coastal ocean”, and (f) “harbor water”[39].

下载图片 查看原文

Fig. 4. (a) Shannon capacity limit under different underwater transmission distances. (b) Entropy of different subcarriers for 25 m and 35 m underwater transmission distances. (c) Graphical illustrations for bit-power loading and the PCS-256/1024QAM-DMT scheme of three different entropies. Note that the bars denote the probability of each modulation symbol[42].

下载图片 查看原文

Fig. 5. Received constellation diagrams of (a) bit-power loading, (b) PCS-256QAM-DMT for 35 m, and (c) PCS-1024QAM-DMT for 25 m underwater transmissions[36].

下载图片 查看原文

Table1. Summary of Recent Works in UWOC

AuthorsTransmitter typeLight output powerPhotodetectorModulation formatsData rateDistance (m)Distance-data rate product (Gbps·m)Real time
Xu et al.[30]Blue LEDN/APIN16-QAM-OFDM161 Mb/s20.32N
Tian et al.[10]440 nm micro-LEDN/APIN/APDOOK800/200 Mb/s0.6/5.41.08N
Wang et al.[33]521 nm LED160 mW2 PINs64-QAM-DMT, MRC2.175 Gb/s1.22.61N
Zhou et al.[72]RGBYC LEDPINBit-power loading DMT15.17 Gb/s1.218.2N
Wang et al.[59]448 nm LEDN/AAPDOOK25 Mb/s100.25Y
Wang et al.[32]520 nm LD15 mWMPPC32-QAM-OFDM312.03 Mb/s216.55N
Oubei et al.[35]450 nm LD15 mWAPD16-QAM-OFDM4.8 Gb/s5.425.92N
Chen et al.[36]520 nm LD15 mWAPD32-QAM-OFDM5.5 Gb/s5/21115.5N
Liu et al.[73]520 nm LD19.4 mWPIN/APDOOK2.7 Gb/s34.593.15N
Fei et al.[39]450 nm LD20 mWAPDBit-power loading DMT, NE7.3 Gb/s15109.95N
Fei et al.[41]450 nm LD12.8 mWAPDMB-DFT-S-DMT5.6 Gb/s55308N
Fei et al.[40]450 nm LD120 mWPINBit-power loading DMT, NE16.6/6.6 Gb/s5/55462@35 mN
Li et al.[37]Two 488 nm LDs20 mWPINPAM4, injection locking16 Gb/s10160N
Li et al.[14]Three 680 nm LDs3 mWPINInjection locking, OOK25 Gb/s10250N
Huang et al.[38]450 nm LD120 mWPIN/APD16-QAM-OFDM14.8/10.8 Gb/s1.7/10.225.16/110N
Hong et al.[42]450 nm LD120 mWPINPCS-DMT18.09/12.6 Gb/s5/35441@35 mN
Wang et al.[44]520 nm LD15 mWAPDOOK, NE500 Mb/s10050N
Hu et al.[43]532 nm LDN/ASPD256-PPM & RS, LDPC∼MHz120N/AN
JAMSTEC[52]450 nm LD>5WPMTN/A20 Mb/s1202.4Y

查看原文

Chao Fei, Xiaojian Hong, Ji Du, Guowu Zhang, Yuan Wang, Xiaoman Shen, Yuefeng Lu, Yang Guo, Sailing He. High-speed underwater wireless optical communications: from a perspective of advanced modulation formats [Invited][J]. Chinese Optics Letters, 2019, 17(10): 100012.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!