中国激光, 2017, 44 (12): 1205003, 网络出版: 2017-12-11   

基于集束多频调制的光谱色散匀滑技术

Smoothing by Spectral Dispersion Technology Based on Bundle Multiple-Frequency Modulation
作者单位
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 中国工程物理研究院研究生院, 北京 100088
摘要
在激光驱动惯性约束聚变研究中, 激光等离子体相互作用是影响点火的重要原因之一; 为了抑制激光等离子体的不稳定性, 诸多光束匀滑技术应运而生, 并得到广泛应用。为了获得更匀滑的焦斑, 提出集束多频调制光谱色散匀滑(SSD)技术, 并对其进行了理论研究; 该技术采用多束激光集束聚焦打靶, 利用单频调制单光束, 利用不同的频率调制不同的子束。结果表明, 该技术可以有效抑制多光束干涉导致的强度调制, 改善了远场光强分布的均匀性, 并且在采用更接近实际情况的色循环数时, 具有比传统多频调制SSD技术更好的匀滑效果。
Abstract
In the research on laser driven inertial confinement fusion, laser-plasma interaction (LPI) is a key issue of affecting ignition. Many beam smoothing technologies are proposed and adopted to suppress the instability of laser-plasma. To obtain a smoother focal spot, the smoothing by spectral dispersion (SSD) technology based on bundle multiple-frequency modulation is proposed and studied theoretically. The technology adopts one modulation frequency in one single beam, and then a bundle of multiple beams with different modulation frequencies focuses on one point. The results indicate that intensity modulation caused by interference of multiple beams can be suppressed and the uniformity of far field intensity distribution can be improved by the proposed technology. Compared with the traditional multiple-frequency modulation SSD technology, the proposed technology has a better smoothing performance when the color cycle number is closer to practical situation.
参考文献

[1] Kirkwood R K, Moody J D, Kline J, et al. A review of laser-plasma interaction physics of indirect-drive fusion[J]. Plasma Physics and Controlled Fusion, 2013, 55(10): 103001.

[2] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060.

[3] Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Optics Letters, 1995, 20(7): 764-766.

[4] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.

[5] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.

[6] Laboratory for Laser Energetics, University of Rochester. Phase conversion using distributed polarization rotation[R]. LLE Review, 1990, 45: 1-12.

[7] Dixit S N, Munro D, Murray J R, et al. Polarization smoothing on the National Ignition Facility[C]. Journal de Physique IV (Proceedings), 2006, 133(1): 717-720.

[8] Haynam C A, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.

[9] Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394.

[10] Walraet F, Riazuelo G, Bonnaud G. Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion[J]. Physics of Plasmas, 2003, 10(3): 811-819.

[11] Zhang R, Jia H T, Tian X C, et al. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics and Lasers in Engineering, 2016, 85: 38-47.

[12] Kruschwitz B E, Kelly J H, Dorrer C, et al. Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP[C]. SPIE, 2013, 8602: 86020E.

[13] Hohenberger M, Shvydky A, Marozas J A, et al. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion[J]. Physics of Plasmas, 2016, 23(9): 092702.

[14] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for Laser Integration Line and laser Megajoule facilities[J]. Applied optics, 2003, 42(13): 2377-2382.

[15] Marozas J A, Collins T J B, Zuegel J D, et al. Continuous distributed phase-plate advances for high-energy laser systems[J]. Journal of Physics, 2016, 717(1): 012107.

[16] 温圣林, 颜浩, 张远航, 等. 波前畸变下连续相位板焦斑的计算与实验[J]. 光学学报, 2014, 34(3): 0314001.

    Wen Shenglin, Yan Hao, Zhang Yuanhang, et al. Calculation and experiment of the focal spot caused by continuous phase plate with incident wavefront distortion[J]. Acta Optica Sinica, 2014, 34(3): 0314001.

[17] 温圣林, 唐才学, 张远航, 等. 最小空间周期对连续相位板加工和性能的影响[J]. 中国激光, 2015, 42(9): 0908001.

    Wen Shenglin, Tang Caixue, Zhang Yuanhang, et al. Effects of least spatial period on the fabrication and performance of continuous phase plate[J]. Chinese J Lasers, 2015, 42(9): 0908001.

[18] Laboratory for Laser Energetics, University of Rochester. Two-dimensional SSD on OMEGA[R]. LLE Review, 1996, 69: 1-10.

[19] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Optics Letters, 2002, 27(9): 725-727.

[20] 李平. 高功率固体激光驱动器靶面光强时空耦合控制技术研究[D]. 绵阳: 中国工程物理研究院, 2008.

[21] 李平, 粟敬钦, 马驰, 等. 光谱色散匀滑对焦斑光强频谱的影响[J]. 物理学报, 2009, 58(9): 6210-6215.

    Li Ping, Su Jingqin, Ma Chi, et al. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physica Sinica, 2009, 58(9): 6210-6215.

[22] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案[J]. 物理学报, 2016, 65(9): 094207.

    Zhong Zheqiang, Hou Pengcheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect[J]. Acta Physica Sinica, 2016, 65(9): 094207.

[23] 李腾飞, 侯鹏程, 张彬. 基于光克尔效应的径向匀滑方案参数优化[J]. 光学学报, 2016, 36(11): 1114002.

    Li Tengfei, Hou Pengcheng, Zhang Bin. Parameters optimization for radial smoothing based on optical Kerr effect[J]. Acta Optica Sinica, 2016, 36(11): 1114002.

[24] 文萍, 李泽龙, 钟哲强, 等. 多色、多频光谱角色散匀滑技术的参数优化[J]. 光学学报, 2015, 35(6): 0614001.

    Wen Ping, Li Zelong, Zhong Zheqiang, et al. Parameters optimization for multi-color multi-central frequency smoothing by spectral dispersion[J]. Acta Optica Sinica, 2015, 35(6): 0614001.

[25] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.

[26] Temporal M, Canaud B, Garbett W J, et al. Numerical analysis of the direct drive illumination uniformity for the Laser MegaJoule facility[J]. Physics of Plasmas, 2014, 21(1): 012710.

[27] Temporal M, Canaud B, le Garrec B J. Irradiation uniformity and zooming performances for a capsule directly driven by a 32×9 laser beams configuration[J]. Physics of Plasmas, 2010, 17(2): 022701.

[28] 李富全, 韩伟, 王芳, 等. 高功率激光驱动器终端光学组件研究现状[J]. 激光与光电子学进展, 2013, 50(6): 060002.

    Li Fuquan, Han Wei, Wang Fang, et al. Research status of final optics assembly in high-power laser facility[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060002.

[29] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351.

郑天然, 张颖, 耿远超, 黄晚晴, 刘兰琴, 孙喜博, 王文义, 李平, 张锐, 粟敬钦. 基于集束多频调制的光谱色散匀滑技术[J]. 中国激光, 2017, 44(12): 1205003. Zheng Tianran, Zhang Ying, Geng Yuanchao, Huang Wanqing, Liu Lanqin, Sun Xibo, Wang Wenyi, Li Ping, Zhang Rui, Su Jingqin. Smoothing by Spectral Dispersion Technology Based on Bundle Multiple-Frequency Modulation[J]. Chinese Journal of Lasers, 2017, 44(12): 1205003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!