中国激光, 2013, 40 (10): 1014001, 网络出版: 2013-09-17  

探测光束会聚角对表面等离子体共振传感器性能的影响

Influences of the Probe Beam Convergence on the Performance of Surface Plasmon Resonance Sensor
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
建立了基于波长调制的Kretschmann结构表面等离子体共振(SPR)传感器系统中整形光路和探测光斑直径与会聚角关系的理论模型。分析了探测光束会聚角对SPR传感器共振波长、共振曲线半峰全宽和共振峰深度的影响。随着探测光束会聚角的减小,共振波长增大,共振曲线的半峰全宽减小,共振峰深度增大,传感器的抗干扰能力增强,系统分辨率提高。通过实验对此进行了验证,考虑会聚角时实验与仿真结果符合得较好;会聚角从0.8°减小到0°时,共振波长从662 nm减小到623 nm,共振曲线半峰全宽从157 nm减小到117 nm,共振峰深度从70.5%增大到93.3%。
Abstract
In the surface plasmon resonance (SPR) sensor system with Kretschmann configuration based on wavelength modulation technology, the theoretical model of the influence of beam reshaped system and the beam diameter on the convergence angle is built. The influence of convergence angle of probe beam on resonance wavelength, the full width at half maximum (FWHM) and the depth of resonance peak is analyzed. As the convergence angle decreases, the resonance wavelength is enhanced, the FWHM is reduced, and the depth of resonance peak is enhanced. As a result, the capacity of resisting disturbance is enhanced, and the system resolution is enhanced. It is confirmed by experiment, and the experimental result fit well with the simulated one when considering the influence of convergence angle. When the convergence angle varies from 0.8° to 0°, the resonance wavelength varies from 662 nm to 623 nm, the FWHM is reduced from 157 nm to 117 nm, and the depth of resonance peak is enhanced from 70.5% to 93.3%.
参考文献

[1] K M Byun, S J Yoon, D H Kim, et al.. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires[J]. Opt Lett, 2007, 32(13): 1902-1904.

[2] R Slavik, J Homda. Ultrahigh resolution long range surface plasmon-based sensor[J]. Sensors and Actuators B: Chemical, 2007, 123(1): 10-12.

[3] Xuan Dou, Blayne M Phillips, Pei-Yu Chung, et al.. High surface plasmon resonance sensitivity enabled by optical disks[J]. Opt Lett, 2012, 37(17): 3681-3683.

[4] B Liedberg, C Nylander, I Lunstrom. Surface plasmon resonance for gas detection and biosensing[J].Sensors and Actuators,1983, 4(1): 299-304.

[5] R C Mucic, J J Storhoff, C A Mirkin, et al.. DNA]-directed synthesis of binary nanoparticle network materials[J]. J Am Chem Soc, 1998, 120(48): 12674-12675.

[6] 李莹, 钟金钢, 张永林. 基于表面等离子体共振成像的指纹采集[J]. 中国激光, 2006, 33(8): 1143-1147.

    Li Ying, Zhong Jingang, Zhang Yonglin. Fingerprint image aquisition based on surface plasmon resonance imaging[J]. Chinese J Lasers, 2006, 33(8): 1143-1147.

[7] 张美,代吉祥, 杨明红, 等. 基于表面等离子体共振的钯膜氢气传感器[J]. 中国激光, 2011, 38(12): 1205005.

    Zhang Mei, Dai Jixiang, Yang Minghong, et al.. Fiber-optic surface plasmon resonance hydrogen sensor based on palladium coating[J]. Chinese J Lasers, 2011, 38(12): 1205005.

[8] E Krger, E Kretschmann. Scattering of light by slightly rough surfaces or thin films including plasma resonance emission[J]. Zeitschrift Für Physik, 1970, 237(1): 1-15.

[9] J Homola, S S Yee, G Gauglitz. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2): 3-15.

[10] Ming Bao, Ge Li, Dongmei Jiang, et al.. Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film[J]. Appl Phys A, 2012, 107(2): 279-283.

[11] Edy Wijaya, Cédric Lenaerts, Sophie Maricot, et al.. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies[J]. Current Opinion in Solid State and Materials Science, 2011, 15(5): 208-224.

[12] 陈强华, 罗会甫, 王素梅, 等. 基于表面等离子体共振和双频激光干涉相位测量的空气折射率测量[J]. 中国激光, 2013, 40 (1): 0108001.

    Chen Qianghua, Luo Huifu, Wang Sumei, et al.. Measurement of air refractive index based on surface plasmon resonance and phase detection by dual-frequency laser interferomentry[J]. Chinese J Lasers, 2013, 40(1): 0108001.

[13] 彭杨, 侯静, 黄值河, 等. 表面等离子体共振控制镜面反射率[J]. 光学学报, 2012, 32(1): 0124001.

    Peng Yang, Hou Jing, Huang Zhihe, et al.. Using surface plasmon resonance to control the reflection index of mirror[J]. Acta Optica Sinica, 2012, 32(1): 0124001.

[14] Arnaud J Benahmed, Chih-Ming Ho. Bandgap-assisted surface-plasmon sensing[J]. Appl Opt, 2007, 46(16): 3369-3375.

[15] Yingying Zhang, Jiancheng Lai, Cheng Yin, et al.. The influences of the probe beam divergence on the performance of imaging surface plasmon resonance sensors[J]. Opt & Lasers in Eng, 2008, 46(9): 635-642.

[16] Sarika Singh, R K Verma, B D Gupta. LED based fiber optic surface plasmon resonance sensor[J]. Opt Quantum Electron, 2010, 42(1): 15-28.

[17] M A Ordal, L L Long, R J Bell, et al.. Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt,Ag, Ti, and W in the infrared and far infrared[J]. Appl Opt, 1983, 22(7): 1099-1119.

陈鑫麟, 肖光宗, 张斌, 傅杨颖. 探测光束会聚角对表面等离子体共振传感器性能的影响[J]. 中国激光, 2013, 40(10): 1014001. Chen Xinlin, Xiao Guangzong, Zhang Bin, Fu Yangying. Influences of the Probe Beam Convergence on the Performance of Surface Plasmon Resonance Sensor[J]. Chinese Journal of Lasers, 2013, 40(10): 1014001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!