激光与光电子学进展, 2017, 54 (11): 110002, 网络出版: 2017-11-17   

类噪声脉冲光纤激光器研究现状及进展 下载: 1402次

Noise-Like Pulsed Fiber Lasers
陈家旺 1,2赵鹭明 1,3,*
作者单位
1 江苏师范大学物理与电子工程学院, 江苏省先进激光技术与新兴产业协同创新中心, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
2 江苏师范大学敬文书院, 江苏 徐州 221116
3 深圳大学光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
摘要
类噪声脉冲(NLP)是锁模激光器在一定条件下生成的一种特殊脉冲,具有能量高、脉宽宽、相干性低等特点。近年来,由于稀土元素掺杂技术、锁模技术和光纤放大技术的不断发展以及抽运能量的不断提升,类噪声脉冲光纤激光器得到了迅速发展。基于此,描述了使用不同锁模技术、工作在不同色散区的类噪声脉冲光纤激光器。依据其脉冲产生机理、脉冲光学性质等特点进行分类叙述,综述了国内外这一领域的研究现状及进展。最后,对近年来类噪声脉冲激光器在生产实践中的具体应用进行了简要阐述。
Abstract
Noise-like pulses (NLP) are a kind of special pulse with high energy, wide spectral bandwidth, and low coherence, which are generated from the passively mode-locked fiber lasers under certain conditions. In recent years, NLP fiber lasers have developed rapidly because of the fast development of doping technology, mode-locking technology, fiber amplification technology, and the improvement of pump energy. Based on this, NLP fiber lasers with different mode locking techniques operated in different dispersion regimes were summarized. The NLP fiber lasers were classified based on the discrepancy in its pulse generation mechanism and optical properties. Research status and progress of the fiber lasers at home and abroad was reviewed. Finally, the application of the fiber lasers in production practice was briefly depicted.
参考文献

[1] Chong C Y. Femtosecond fiber lasers and amplifiers based on the pulse propagation at normal dispersion[D]. New York: Cornell University, 2008.

[2] 姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学跟瞄技术研究[J]. 中国激光, 2015, 42(4): 0405008.

    Jiang Huilin, Jiang Lun, Song Yansong, et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. Chinese J Lasers, 2015, 42(4): 0405008.

[3] Shenoy M, Huang H. An optical fiber-based corrosion sensor based on laser light reflection[C]. SPIE, 2010, 7647: 76473O.

[4] Barton S N, Janoff K A, Bakos G J. Medical laser fiber optic cable having improved treatment indicators for BPH surgery: EP1395192 A1[P]. 2004-03-10.

[5] Agre V, Petkovek R. Gain-switched Yb-doped fiber laser for microprocessing[J]. Applied Optics, 2013, 52(13): 3066-3072.

[6] Falconi M C, Palma G, Starecki F, et al. Novel pumping schemes of mid-IR photonic crystal fiber lasers for aerospace applications[C]. 2016 18th International Conference on IEEE Transparent Optical Networks (ICTON), 2016: 1-5.

[7] Campanelli S L, Casalino G, Mortello M, et al. Microstructural characteristics and mechanical properties of Ti6Al4V alloy fiber laser welds[J]. Procedia CIRP, 2015, 33: 428-433.

[8] Whitenett G, Stewart G, Yu H, et al. Investigation of a tunable mode-locked fiber laser for application to multipoint gas spectroscopy[J]. Journal of Lightwave Technology, 2004, 22(3): 813-819.

[9] Maiti D, Brandt-Pearce M. Modified nonlinear decision feedback equalizer for long-haul fiber-optic communications[J]. Journal of Lightwave Technology, 2015, 33(18): 3763-3772.

[10] Horowitz M, Barad Y, Silberberg Y. Noise-like pulses with a broadband spectrum generated from an erbium-doped fiber laser[J]. Optics Letters, 1997, 22(11): 799-801.

[11] Li J, Zhang Z, Sun Z, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes[J]. Optics Express, 2014, 22(7): 7875-7882.

[12] Vazquez-Zuniga L A, Jeong Y. Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1549-1551.

[13] Pottiez O, Ibarra-Escamilla B, Kuzin E A, et al. Multiple noise-like pulsing of a figure-eight fibre laser[J]. Laser Physics, 2013, 24(1): 015103.

[14] Grudinin A B, Richardson D J, Payne D N. Energy quantisation in figure eight fibre laser[J]. Electronics Letters, 1992, 28(1): 67-68.

[15] Zhao L M, Tang D Y, Wu J, et al. Noise-like pulse in a gain-guided soliton fiber laser[J]. Optics Express, 2007, 15(5): 2145-2150.

[16] Della V G, Osellame R, Galzerano G, et al. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser[J]. Applied Physics Letters, 2006, 89(23): 231115.

[17] Sobon G, Sotor J, Abramski K M. Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz[J]. Applied Physics Letters, 2012, 100(16): 161109.

[18] Keller U, Weingarten K J, Krtner F X, et al. Semiconductor saturable absorber mirrors (SESAM′s) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

[19] Tang D Y, Zhao L M, Zhao B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser[J]. Optics Express, 2005, 13(7): 2289-2294.

[20] Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser[J]. Optics Letters, 1998, 23(18): 1462-1464.

[21] Tamura K, Ippen E P, Haus H A, et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics Letters, 1993, 18(13): 1080-1082.

[22] Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers[J]. Physical Review Letters, 1980, 45(13): 1095.

[23] Ilday F , Buckley J R, Wise F W. Self-similar evolution of parabolic pulses in a fiber laser[C]. Nonlinear Guided Waves and Their Applications, Optical Society of America, 2004: MD8.

[24] Bednyakova A E, Babin S A, Kharenko D S, et al. Evolution of dissipative solitons in a fiber laser oscillator in the presence of strong Raman scattering[J]. Optics Express, 2013, 21(18): 20556-20564.

[25] Li D, Shen D, Li L, et al. Raman-scattering-assistant broadband noise-like pulse generation in all-normal-dispersion fiber lasers[J]. Optics Express, 2015, 23(20): 25889-25895.

[26] Keren S, Brand E, Levi Y, et al. Data storage in optical fibers and reconstruction by use of low-coherence spectral interferometry[J]. Optics Letters, 2002, 27(2): 125-127.

[27] Wang Q Q, Chen T, Li M, et al. All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes[J]. Applied Physics Letters, 2013, 103(1): 011103.

[28] Huang Y Q, Hu Z A, Cui H, et al. Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser[J]. Optics Letters, 2016, 41(17): 4056-4059.

[29] Zaytsev A K, Lin C H, You Y J, et al. A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser[J]. Laser Physics Letters, 2013, 10(4): 045104.

[30] Deng Y, Koch M, Lu F, et al. Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber[J]. Optics Express, 2004, 12(16): 3872.

[31] Krzempek K. Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser[J]. Optics Express, 2015, 23(24): 30651-30656.

[32] Seong N H, Kim D Y. Experimental observation of stable bound solitons in a figure-eight fiber laser[J]. Optics Letters, 2002, 27(15): 1321-1323.

[33] Tang D Y, Zhao B, Shen D Y, et al. Compound pulse solitons in a fiber ring laser[J]. Physical Review A, 2003, 68(1): 013816.

[34] Tang D Y, Zhao L M. Generation of 47-fs pulses directly from an erbium-doped fiber laser[J]. Optics Letters, 2007, 32(1): 41-43.

[35] Kang J U. Broadband quasi-stationary pulses in mode-locked fiber ring laser[J]. Optics Communications, 2000, 182(4): 433-436.

[36] Zhao L M, Tang D Y. Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser[J]. Applied Physics B, 2006, 83(4): 553-557.

[37] Zhao L M, Tang D Y, Wu J. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 2006, 31(12): 1788-1790.

[38] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100.

[39] Zhang Z, Dai G. All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter[J]. IEEE Photonics Journal, 2011, 3(6): 1023-1029.

[40] Pottiez O, Ibarraescamilla B, Kuzin E A, et al. Two regimes of widely tunable noise-like pulses from a figure-eight fiber laser[J]. Laser Physics, 2014, 24(10): 105104.

[41] Buckley J R, Wise F W, Ilday F , et al. Femtosecond fiber lasers with pulse energies above 10 nJ[J]. Optics Letters, 2005, 30(14): 1888-1890.

[42] Kalashnikov V L, Podivilov E, Chernykh A, et al. Approaching the microjoule frontier with femtosecond laser oscillators: Theory and comparison with experiment[J]. New Journal of Physics, 2005, 7(1): 217.

[43] Firth W J, Paulau P V. Soliton lasers stabilized by coupling to a resonant linear system[J]. The European Physical Journal D, 2010, 59(1): 13-21.

[44] Lei D J, Yang H, Dong H, et al. Effect of birefringence on the bandwidth of noise-like pulse in an erbium-doped fiber laser[J]. Journal of Modern Optics, 2009, 56(4): 572-576.

[45] Zhao L M, Tang D Y, Cheng T H, et al. 120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser[J]. Optics Communications, 2008, 281(1): 157-161.

[46] Horowitz M, Silberberg Y. Control of noise-like pulse generation in erbium-doped fiber lasers[J]. Photonics Technology Letters, 1998, 10(10): 1389-1391.

[47] Zheng X W, Luo Z C, Liu H, et al. High-energy noise-like rectangular pulse in a passively mode-locked figure-eight fiber laser[J]. Applied Physics Express, 2014, 7(4): 042701.

[48] Wang Q, Chen T, Zhang B, et al. All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noise-like modes[J]. Optics Letters, 2011, 36(19): 3750-3752.

[49] Pottiez O, Grajalescoutio R, Ibarraescamilla B, et al. Adjustable noise-like pulses from a figure-eight fiber laser[J]. Applied Optics, 2011, 50(25): E24-E31.

[50] Kobtsev S, Kukarin S, Smirnov S, et al. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers[J]. Optics Express, 2009, 17(23): 20707-20713.

[51] Cui Y. Bandwidth-tunable dissipative soliton and noise-like pulse in a normal dispersion fiber laser with a dual-scale saturable absorber[J]. Journal of Optics, 2016, 18(10): 105503.

[52] Sobon G, Sotor J, Przewolka A, et al. Amplification of noise-like pulses generated from a graphene-based Tm-doped all-fiber laser[J]. Optics Express, 2016, 24(18): 20359-20364.

[53] Cai J H, Chen H, Chen S P, et al. State distributions in two-dimensional parameter spaces of a nonlinear optical loop mirror-based, mode-locked, all-normal-dispersion fiber laser[J]. Optics Express, 2017, 25(4): 4414-4428.

[54] Lin J H, Chen C L, Chan C W, et al. Investigation of noise-like pulses from a net normal Yb-doped fiber laser based on a nonlinear polarization rotation mechanism[J]. Optics Letters, 2016, 41(22): 5310-5313.

[55] North T, Rochette M. Raman-induced noiselike pulses in a highly nonlinear and dispersive all-fiber ring laser[J]. Optics Letters, 2013, 38(6): 890-892.

[56] He X, Luo A, Yang Q, et al. 60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser[J]. Applied Physics Express, 2013, 6(11): 112702.

[57] Runge A F, Aguergaray C, Broderick N G, et al. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers[J]. Optics Letters, 2013, 38(21): 4327-4330.

[58] Dou L, Gao Y, Xu A, et al. Super-continuum generation using noise-like pulses from a large normal dispersion passively mode locking fiber laser[C]. International Nano-Optoelectronics Workshop, 2007: 9798724.

[59] 徐佳, 吴思达, 刘江, 等. 基于氧化石墨烯的类噪声脉冲拉曼光纤激光器[J]. 中国激光, 2014, 41(3): 0302006.

    Xu Jia, Wu Sida, Liu Jiang, et al. Noise-like pulsed Raman fiber lasers using graphene oxide saturable absorber[J]. Chinese J Lasers, 2014, 41(3): 0302006.

[60] 金鑫鑫, 李雷, 罗娇林, 等. 光纤激光器中类噪声脉冲自相关的数值研究[J]. 激光与光电子学进展, 2015, 52(12): 121902.

    Jin Xinxin, Li Lei, Luo Jiaolin, et al. Numerical study on autocorrelation of noise-like pulse in fiber lasers[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121902.

[61] 刘昆, 师红星, 刘江, 等. 基于类噪声脉冲抽运的高功率全光纤中红外超连续谱光源[J]. 中国激光, 2015, 42(9): 0902003.

    Liu Kun, Shi Hongxing, Liu Jiang, et al. High-power all-fiber mid-infrared super-continuum generation pumped by noise-like pulses[J]. Chinese J Lasers, 2015, 42(9): 0902003.

[62] 王子薇, 王兆坤, 邹峰, 等. 高峰值功率皮秒脉冲棒状光子晶体光纤放大器[J]. 中国激光, 2016, 43(10): 1001001.

    Wang Ziwei, Wang Zhaokun, Zou Feng, et al. High-peak-power rod-type photonic crystal fiber amplifier for picosecond pulses[J]. Chinese J Lasers, 2016, 43(10): 1001001.

[63] Liu S, Yan F P, Zhang L N, et al. Noise-like femtosecond pulse in passively mode-locked Tm-doped NALM-based oscillator with small net anomalous dispersion[J]. Journal of Optics, 2016, 18(1): 015508.

[64] Chen Y, Ruan S, Wu X, et al. Ultra-flat and ultra-broadband supercontinuum generation in photonic crystal fiber pumped by noise-like pulses[C]. 31st International Congress on High-Speed Imaging and Photonics. International Society for Optics and Photonics, 2017: 103280D.

[65] Putnam M A, Dennis M L, Duling Iii I N, et al. Broadband square-pulse operation of a passively mode-locked fiber laser for fiber Bragg grating interrogation[J]. Optics Letters, 1998, 23(2): 138-140.

[66] Keren S, Horowitz M. Interrogation of fiber gratings by use of low-coherence spectral interferometry of noise-like pulses[J]. Optics Letters, 2001, 26(6): 328-330.

[67] zgren K, ktem B, Yilmaz S, et al. 83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining[J]. Optics Express, 2011, 19(18): 17647-17652.

[68] Lin S S, Hwang S K, Liu J M. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses[J]. Optics Express, 2014, 22(4): 4152-4160.

[69] Zaytsev A, Lin C H, You Y J, et al. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers[J]. Optics Express, 2013, 21(13): 16056-16062.

[70] Bale B G, Okhitnikov O G, Turitsyn S K. Modeling and technologies of ultrafast fiber lasers[M]. Wiley-VCH: Fiber Lasers, 2012: 135-175.

[71] Hernandez-Garcia J C, Pottiez O, Estudillo-Ayala J M. Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser[J]. Laser Physics, 2012, 22(1): 221-226.

[72] Nose K, Ozeki Y, Kishi T, et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique[J]. Optics Express, 2012, 20(13): 13958-13965.

陈家旺, 赵鹭明. 类噪声脉冲光纤激光器研究现状及进展[J]. 激光与光电子学进展, 2017, 54(11): 110002. Chen Jiawang, Zhao Luming. Noise-Like Pulsed Fiber Lasers[J]. Laser & Optoelectronics Progress, 2017, 54(11): 110002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!