中国激光, 2015, 42 (4): 0413002, 网络出版: 2015-04-08   

激光测高仪平顶高斯光束条件下的回波参数模型

Model of Waveform Parameters for Laser Altimeter System Under Flattened Gaussian Beams
作者单位
1 山东科技大学测绘科学与工程学院, 山东 青岛 266590
2 武汉大学电子信息学院, 湖北 武汉 430060
摘要
星载激光测高仪通过提取激光回波参数计算卫星与地表的距离,结合轨道和姿态信息生成激光脚点的三维坐标。普通高斯光束的空间能量分布随光斑半径增加迅速衰减,不利于探测复杂和分层的地表目标,而平顶高斯光束可以克服这一缺点。根据平顶高斯光束和激光测高回波的相关理论推导得出平顶高斯激光模式下回波波形主要参数的解析式,并使用波形模拟器、波形处理算法,以及地球科学激光测高系统(GLAS)真实回波对所得理论模型进行了验证,结果显示不同阶数激光脉冲的对比偏差都小于3%,且随着目标斜率或阶数的增加,回波宽度和距离误差也随之增加,4阶平顶高斯光束目标斜率0.05时对应的距离误差超过10 cm。
Abstract
The distance between satellite and target is calculated through extracting parameters of received waveforms, combined with orbit and attitude information, the accurate location and elevation of laser footprint are acquired. For common Gaussian laser beam, the spatial distribution of energy decays rapidly with the increase of laser spot radius, which is not suitable for detecting the complicated and layered ground target, while the flattened Gaussian beam can overcome this drawback. According to the theory of flattened Gaussian beam and waveform model of laser altimeter, the primary parameters of received waveform are derived and verified using laser altimetry waveform simulator, waveform processing algorithm and actual geoscience laser altimeter system (GLAS) waveforms. The results show that the contrast deviations of different order laser pulses are all less than 3%, the waveform width and range error increase with the rising of target slope or order number, and the corresponding range error of the 4th order flattened Gaussian beam under target stope of 0.05 is more than 10 cm range error.
参考文献

[1] Schutz B E. Overview of ICES at mission[J]. Geophysical Research Letters, 2005, 32: L21S01.

[2] Hilbert C, Schmullius C. Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape[J]. Remote Sensing, 2012, 4(8): 2210-2235.

[3] Kurtz N T, Markus T. Satellite observations of Antarctic sea ice thickness and volume[J]. Journal of Geophysical Research, 2012, 117: C08025.

[4] 何涛, 侯鲁健, 吕波, 等. 激光雷达探测反演PM2.5浓度的精度研究[J]. 中国激光, 2013, 40(1): 0113001.

    He Tao, Hou Lujian, Lü Bo, et al.. Study of accuracy of lidar inversion PM2.5 concentration[J]. Chinese J Lasers, 2013, 40(1): 0113001.

[5] 伯广宇, 刘东, 吴德成, 等. 双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质[J]. 中国激光, 2014, 41(1): 0113001.

    Bo Guangyu, Liu Dong, Wu Decheng, et al.. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days[J]. Chinese J Lasers, 2014, 41(1): 0113001.

[6] 王治飞, 刘东, 成中涛, 等. 基于模式识别的激光雷达遥感灰霾组分识别模型[J]. 中国激光, 2014, 41(11): 1113001.

    Wang Zhifei, Liu Dong, Cheng Zhongtao, et al.. Pattern recognition model for haze identification with atmospheric backscatter lidars [J]. Chinese J Lasers, 2014, 41(11): 1113001.

[7] 张薇, 吴松华, 宋小全, 等. 夫琅禾费暗线激光雷达探测青岛市郊大气边界层[J]. 光学学报, 2013, 33(6): 0628002.

    Zhang Wei, Wu Songhua, Song Xiaoquan, et al.. Atmospheric boundary layer detected by a Fraunhofer lidar over Qingdao suburb [J]. Acta Optica Sinica, 2013, 33(6): 0628002.

[8] Gori F. Flattened Gaussian beams[J]. Optics Communications, 1994, 107: 335-341.

[9] Cerjan A, Cerjan C. Analytic solution of flat-top Gaussian and Laguerre-Gaussian laser field components[J]. Optics Letters, 2010, 35(20): 3465-3467.

[10] Gardner C S. Ranging performance of satellite laser altimeters[J]. Transactions on geoscience and remote sensing, 1992, 30(5): 1061-1072.

[11] Gardner C S. Target signatures for laser altimeters: an analysis [J]. Applied Optics, 1982, 21(3): 448-453.

[12] Abshire J B, McGarry J F, Pacini L K, et al.. Laser altimetry simulator, Version 3.0 User′s Guide[R]. US: NASA Goddard Space Flight Center, 1994.

[13] Brenner A C, DiMarzio J P, Zwally H J. Precision and accuracy of satellite radar and laser altimeter data over the continental ice sheets[J]. Transactions on Geoscience and Remote Sensing, 2007, 45(2): 321-331.

[14] Brenner A C, Zwally H J, Bentley C R, et al.. Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetation heights[R]. US: GLAS Algorithm Theoretical Basis Document Version 5.0, 2011.

[15] 马跃, 李松, 周辉, 等. 基于自适应滤波星载激光测高仪回波噪声抑制方法[J]. 红外与激光工程, 2012, 41(12): 3263-3268.

    Ma Yue, Li Song, Zhou Hui, et al.. Noise suppression method for received waveform of satellite laser altimeter based on adaptive filter[J]. Infrared and Laser Engineering, 2012, 41(12): 3263-3268.

[16] Fricker H A, Borsa A, Minster B, et al.. Assessment of ICESat performance at the salar de Uyuni, Bolivia[J]. Geophysical Research Letters, 2005, 32: L21S06.

马跃, 李松, 阳凡林, 周辉. 激光测高仪平顶高斯光束条件下的回波参数模型[J]. 中国激光, 2015, 42(4): 0413002. Ma Yue, Li Song, Yang Fanlin, Zhou Hui. Model of Waveform Parameters for Laser Altimeter System Under Flattened Gaussian Beams[J]. Chinese Journal of Lasers, 2015, 42(4): 0413002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!