红外与毫米波学报, 2018, 37 (6): 740, 网络出版: 2018-12-26   

基于人工微结构的大面积高效率近红外吸收器

Large-area high-performance near-infrared absorber based on plasmonic nanostructures
作者单位
1 东华大学 理学院, 上海 201620
2 中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
3 中国科学院大学, 北京 100049
摘要
基于人工微结构超材料的先进理念, 设计制备工作波长可调的近红外大面积吸收器.器件制备采用纳米微球化学自组装方法制备顶层金属微结构, 该方法可制备大面积样品.实验结果显示, 吸收器在近红外波段峰值吸收率超过99%, 吸收波长可以通过结构单元几何尺寸调节.理论模拟结果不但与实验测量的数据相一致, 而且很好地阐述了器件高效光吸收的物理机理.
Abstract
A large-area high-performance near-infrared absorber based on plasmonic nanostructures is introduced, fabricated and experimentally characterized. The periodic plasmonic nanostructures are prepared by self-assembled template, a charming low-cost technology for making large-area samples. Experimental results show that the absorbance can be as high as 99%. The spectral position of the absorption peak is experimentally demonstrated to be tuned by the geometric dimensions. The physical origin of the absorption effect is theoretically explained as well.
参考文献

[1] Coutts T J. A review of progress in thermophotovoltaic generation of electricity [J]. Renewable Sustainable Energy Reviews, 1999, 3(2-3): 77-184.

[2] Rephaeli E. Fan S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit [J]. Opt. Express, 2009, 17(17): 15145-15159.

[3] Bermel P, Ghebrebrhan M, Chan W, et al. Design and global optimization of high-efficiency thermophotovoltaic systems [J]. Opt. Express, 2009, 18(S2), A314-A334.

[4] Richards P L, Bolometers for infrared and millimeter waves [J]. Journal of Applied Physics, 1994, 76(1):1-24.

[5] Ma W, Jia D L, Wen Y Z, et al. Diode-based microbolometer with performance enhanced by broadband metamaterial absorber[J]. Opt. Lett. 2016, 41(13), 2974-2977.

[6] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths [J]. Science, 2010, 16(5976):337-339.

[7] Kahn J M, Barry J R, Wireless infrared communications [J]. Proceedings of the IEEE, 1997, 84(2):265-298.

[8] Carruthers J B, Kahn J M. Angle diversity for nondirected wireless infrared communication [J]. IEEE Transactions on communications, 2000, 48(6):960-969.

[9] Soref R. Mid-infrared photonics in silicon and germanium [J]. Nature Photonics, 2010, 4(8):495-497.

[10] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding [J]. Nat. Photonics, 2007, 1(1):641–648.

[11] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity [J]. Physical review letters, 2000, 84(18):4184-4187.

[12] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index [J]. Science, 2004, 305(5685):788-792.

[13] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials [J]. Nature Photonics, 2011, 5(9):523-530.

[14] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical review letters, 2008, 100(20):207402.

[15] Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial [J]. Applied Physics Letters, 2010, 96(25):4184.

[16] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett. 2010, 10:2342-2348.

[17] He Y R, Deng H X, Jiao X Y, et al. Infrared perfect absorber based on nanowire metamaterial cavities [J]. Optics Letters, 2013, 38(7):1179-1181.

[18] Watts C M, Liu X, Padilla W J. Metamaterial electromagnetic wave absorbers [J]. Advanced Materials, 2012, 24(23):98-120.

[19] Garcia-Meca, C. Hurtado J, Marti J, et al. Low-loss multilayered metamaterial exhibiting a negative index of visible of refraction at visible wavelengths [J]. Phys. Rev. Lett. 2011,106(6):067402-4.

[20] Zhao J, Wu Y Q, Xue C F, et al. Fabrication of high aspect ratio nanoscale periodic structures by the soft X-ray interference lithography [J]. Microelectronic Engineering, 2016, 170:49-53.

[21] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer [J]. Science 2009, 325(5947):1513-1515.

[22] Yu Z N, Kurataka N, Tran H, et al. Defect Tracking for nanoimprint lithography using optical surface scanner and scanning electron microscope [J]. Applied Physics A, 2016, 122(9):1-5.

[23] Palik E D. Handbook of optical constants of solids [M]. Academic Press, 1998:875-882.

陆加良, 俞伟伟, 张晓东, 许昊, 郝加明, 孙艳, 陈鑫, 孟祥建, 戴宁, 禇君浩. 基于人工微结构的大面积高效率近红外吸收器[J]. 红外与毫米波学报, 2018, 37(6): 740. LU Jia-Liang, YU Wei-Wei, ZHANG Xiao-Dong, XU Hao, HAO Jia-Ming, SUN Yan, CHEN Xin, MENG Xiang-Jian, DAI Ning, CHU Jun-Hao. Large-area high-performance near-infrared absorber based on plasmonic nanostructures[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 740.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!