激光技术, 2018, 42 (5): 593, 网络出版: 2018-09-11   

基于可调谐CO2激光器的SF6差分光声检测研究

Research of SF6 detection by means of differential photoacoustic spectroscopy with tunable CO2 laser
作者单位
华中科技大学 武汉光电国家研究中心, 武汉 430074
摘要
为了对电力场所SF6气体浓度进行有效监测, 采用光声光谱气体检测技术, 基于波长可调谐CO2激光器, 设计了一套大气环境下的SF6痕量气体检测系统, 并提出一种差分光声光谱技术以提升光声系统的检测灵敏度。结果表明,所设计的SF6气体检测光声系统的共振中心频率为1066Hz, 品质因数为32.04, 光声池常数为89.74Pa·m·W-1; 利用单谱线光声法, 在激光谱线10P12处检测SF6气体的灵敏度为0.06×10-6(体积分数); 采用差分光声光谱气体技术后, 在激光谱线10P12和10P16处3W强度调制光的照射下, 光声系统的灵敏度提升到0.02×10-6(体积分数)。差分光声光谱技术能有效降低噪声影响, 提升光声检测系统的灵敏度, 具有一定的实用价值。
Abstract
In order to monitor SF6 gas concentration in electric power site effectively, based on wavelength tunable CO2 laser, a set of SF6 trace gas detection system under atmospheric environment was designed by means of photoacoustic spectroscopy gas detection technology. Differential photoacoustic spectroscopy technique was proposed to improve detection sensitivity of photoacoustic system. The results show that resonant center frequency of the designed SF6 gas detection photoacoustic system is 1066Hz, quality factor is 32.04 and photoacoustic pool constant is 89.74 Pa·m·W-1. Sensitivity of SF6 gas detection at laser spectral line 10P12 is 0.06×10-6(volume fraction) by using single spectrum photoacoustic method. Sensitivity of photoacoustic system at 10P12 and 10P16 and at 3W modulated light increases to 0.02×10-6(volume fraction) after using differential photoacoustic spectroscopy gas technology. Differential photoacoustic spectroscopy can effectively reduce noise effect and enhance the sensitivity of photoacoustic detection system. It has practical value.
参考文献

[1] LIU Ch, ZHANG W, XU M, et al. A study of aging property of pressboard in gas insulator transformer[C]// IEEE International Conference on Dielectrics, 2016. New York, USA: IEEE, 2016: 978-982.

[2] FILHO J G R, SANS R M, MARTINEZ M L B, et al. Very fast transient overvoltage waveshapes in a 500kV gas insulated switchgear setup[J]. IEEE Electrical Insulation Magazine, 2016, 32(3): 17-23.

[3] DERVOS C T, VASSILIOU P. Sulfur Hexafluoride (SF6): Global environmental effects and toxic byproduct formation[J]. Journal of the Air & Waste Management Association, 2000, 50(1): 137-141.

[4] CHEETHAM P, HELLANY A, JONES S. Density monitoring of high-voltage SF6 circuit breakers[J]. IEEE Electrical Insulation Magazine, 2015, 31(2): 6-13.

[5] KARIMINEZHAD H, PARVIN P, BORNA F, et al. SF6 leak detection of high-voltage installations using TEA-CO2 laser-based DIAL[J]. Optics and Lasers in Engineering, 2010, 48(4): 491-499.

[6] BAUER R, STEWART G, JOHNSTONE W, et al. 3D-printed miniature gas cell for photoacoustic spectroscopy of trace gases[J]. Optics Letters, 2014, 39(16): 4796-4799.

[7] WANG Zh, LI Zh L, REN W. Quartz-enhanced photoacoustic detection of ethylene using a 10.5μm quantum cascade laser[J]. Optics Express, 2016, 24(4): 4143-4154.

[8] SICILIANI M, VICIANI S, BORRI S, et al. Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring[J]. Optics Express, 2014, 22(23): 28222-28231.

[9] JAHJAH M, JIANG W, SANCHEZ N P, et al. Atmospheric CH4 and N2O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013[J]. Optics Letters, 2014, 39(4): 957-960.

[10] ZHU W, LIU Q, WU Y. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer[J]. Optics Express, 2015, 23(18): 23108-23116.

[11] TING F, JOSEPH E P, KENNETH M K, et al. Characterization of bone microstructure using photoacoustic spectrum analysis[J]. Optics Express, 2015, 23(19) : 25217-25224.

[12] HUSSAIN A, PETERSEN W, STALEY J, et al. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics[J]. Optics Letters, 2015, 41(8): 1720-1723.

[13] FENG T, LI Q Ch, ZHANG Ch, et al. Characterizing cellular morphology by photoacoustic spectrum analysis with an ultra-broadband optical ultrasonic detector[J]. Optics Express, 2016, 26(17): 19853-19862.

[14] SHI M K, HU B, YING H Sh, et al. Research of photoacoustic spectroscopy effect of ethylene concentration detected by laser[J]. Laser Technology, 2016, 40(3): 426-431(in Chinese).

[15] CHEN Y, GAO G Z, CAI T D. The technology of ethylene detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(5): 511001(in Chinese).

[16] XU Y ZH, ZHOU H J, LI B, et al. Study on detection of SF6 gas leakage based on photoacoustic spectrometry[C]// International Conference on Measuring Technology and Mechatronics Automation, 2009. ICMTMA '09. New York, USA: IEEE, 2009: 261-265.

[17] WU G L. Study on detection device of trace sulfur hexafluoride gas[D]. Changchun: Northeast Electric Power University, 2015: 1-48(in Chinese).

[18] LI Y. Research on SF6 gas detection by photoacoustic spectroscopy and its application[D]. Mianyang: Southwest University of Science and Technology, 2015: 1-60 (in Chinese).

[19] BERNACKI B E, SCAMARCIO G, KRIESEL J, et al. PArt-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation [J]. Optics Letters, 2012, 37(21): 4461-4463.

[20] SAMPAOLO A, PATIMISCO P, GIGLIO M, et al. Highly sensitive gas leak detector based on a quartz-enhanced photoacoustic SF6 sensor[J]. Optics Express, 2016, 24(14): 15872-15881.

[21] SPAGNOLO V, PATIMISCO P, BORRI S, et al. Mid-infrared fiber-coupled QCL-QEPAS sensor[J]. Applied Physics, 2013, B112(1): 25-33.

[22] DIBAEE B, PARVIN P, BAVALI A, et al. Effect of colliding partners on the performance of SF6 and SO2 trace measurements in photoacoustic spectroscopy[J]. Applied Optics, 2015, 54(30): 8971-8981.

[23] MOHEBBIFAR M R, KHALILZADEH J, DIBAEE B, et al. Effect of buffer gases on the performance of SO2 trace measurement based on photoacoustic spectroscopy[J]. Infrar ed Physics & Technology, 2014, 65(7): 61-66.

[24] GORDON I E, ROTHMAN L S, HILL C, et al. The HITRAN2016 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2017, 130(11): 4-50.

[25] YIN Q R. Photoacoustic photothermal technology and its application[M]. Beijing: The Science Publishing Company, 1991: 149-157(in Chinese).

郭红, 王新兵, 左都罗, 陈宝锭. 基于可调谐CO2激光器的SF6差分光声检测研究[J]. 激光技术, 2018, 42(5): 593. GUO Hong, WANG Xinbing, ZUO Duluo, CHEN Baoding. Research of SF6 detection by means of differential photoacoustic spectroscopy with tunable CO2 laser[J]. Laser Technology, 2018, 42(5): 593.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!