Photonics Research, 2017, 5 (5): 05000406, Published Online: Aug. 15, 2017   

Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure Download: 1010次

Author Affiliations
1 School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
2 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Laser Microprocessing Group, Facultad Ciencias, Universidad de Salamanca, Salamanca 37008, Spain
4 School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Copy Citation Text

Ziqi Li, Chen Cheng, Ningning Dong, Carolina Romero, Qingming Lu, Jun Wang, Javier Rodríguez Vázquez de Aldana, Yang Tan, Feng Chen. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5): 05000406.

References

[1] MurphyE. J., Integrated Optical Circuits and Components (Marcel Dekker, 1999).

[2] J. C. F. Matthews, A. Politi, A. Stefanov, J. L. O’Brien. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photonics, 2009, 3: 346-350.

[3] D. Kip. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications. Appl. Phys. B, 1998, 67: 131-150.

[4] F. Chen. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photon. Rev., 2012, 6: 622-640.

[5] F. Chen, J. R. Vázquez de Aldana. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photon. Rev., 2014, 8: 251-275.

[6] K. M. Davis, K. Miura, N. Sugimoto, K. Hirao. Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21: 1729-1731.

[7] D. Choudhury, J. R. Macdonald, A. K. Kar. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photon. Rev., 2014, 8: 827-846.

[8] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 1996, 53: 1749-1761.

[9] S. M. Eaton, H. Zhang, M. L. Ng, J. Z. Li, W. J. Chen, S. Ho, P. R. Herman. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express, 2008, 16: 9443-9458.

[10] J. Burghoff, H. Hartung, S. Nolte, A. Tünnermann. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl. Phys. A, 2007, 86: 165-170.

[11] G. Palmer, S. Gross, A. Fuerbach, D. G. Lancaster, M. J. Withford. High slope efficiency and high refractive index change in direct-written Yb-doped waveguide lasers with depressed claddings. Opt. Express, 2013, 21: 17413-17420.

[12] T. Calmano, A. G. Paschke, S. Müller, C. Kränkel, G. Huber. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt. Express, 2013, 21: 25501-25508.

[13] R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. P. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, A. K. Kar. 1.5  GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler. Opt. Express, 2013, 21: 7943-7950.

[14] C. Grivas. Optically pumped planar waveguide lasers, Part I: fundamentals and fabrication techniques. Prog. Quantum Electron., 2011, 35: 159-239.

[15] H. Yu, J. Liu, H. Zhang, A. A. Kaminskii, Z. Wang, J. Wang. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer. Laser Photon. Rev., 2014, 8: 847-864.

[16] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 2007, 6: 183-191.

[17] J. S. Ponraj, Z. Q. Xu, S. C. Dhanabalan, H. Mu, Y. Wang, J. Yuan, P. Li, S. Thakur, M. Ashrafi, K. McCoubrey, Y. Zhang, S. Li, H. Zhang, Q. Bao. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27: 462001.

[18] W. Tao, X. Zhu, X. Yu, X. Zeng, Q. Xiao, X. Zhang, X. Ji, X. Wang, J. Shi, H. Zhang, L. Mei. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater., 2017, 29: 1603276.

[19] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 2014, 8: 899-907.

[20] Y. Tan, H. Zhang, C. Zhao, S. Akhmadaliev, S. Zhou, F. Chen. Bi2Se3Q-switched Nd: YAG ceramic waveguide laser. Opt. Lett., 2015, 40: 637-640.

[21] C. Cheng, H. Liu, Y. Tan, J. R. Vázquez de Aldana, F. Chen. Passively Q-switched waveguide lasers based on two-dimensional transition metal diselenide. Opt. Express, 2016, 24: 10385-10390.

[22] C. Cheng, H. Liu, Z. Shang, W. Nie, Y. Tan, B. R. Rabes, J. R. Vázquez de Aldana, D. Jaque, F. Chen. Femtosecond laser written waveguides with MoS2 as saturable absorber for passively Q-switched lasing. Opt. Mater. Express, 2016, 6: 367-373.

[23] Q. Bao, K. P. Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6: 3677-3694.

[24] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7: 699-712.

[25] R. He, J. R. Vázquez de Aldana, F. Chen. Passively Q-switched Nd: YVO4 waveguide laser using graphene as a saturable absorber. Opt. Mater., 2015, 46: 414-417.

[26] Y. Tan, Z. Guo, L. Ma, H. Zhang, S. Akhmadaliev, S. Zhou, F. Chen. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous. Opt. Express, 2016, 24: 2858-2866.

[27] J. Liu, S. Wu, Q. Yang, P. Wang. Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser. Opt. Lett., 2011, 36: 4008-4010.

[28] J. Lin, Y. Hu, C. Chen, C. Gu, L. Xu. Wavelength-tunable Yb-doped passively Q-switching fiber laser based on WS2 saturable absorber. Opt. Express, 2015, 23: 29059-29064.

[29] Z. Li, F. Chen. Ion beam modification of two-dimensional materials: characterization, properties, and applications. Appl. Phys. Rev., 2017, 4: 011103.

[30] Y. Tan, X. Liu, Z. He, Y. Liu, M. Zhao, H. Zhang, F. Chen. Tuning of interlayer coupling in large-area graphene/WSe2 van der Waals heterostructure via ion irradiation: optical evidences and photonic applications. ACS Photon., 2017, 4: 1531-1538.

[31] C. R. Ryder, J. D. Wood, S. A. Wells, M. C. Hersam. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano, 2016, 10: 3900-3917.

[32] MaL.TanY.Ghorbani-AslM.BoettgerR.KretschmerS.ZhouS.HuangZ.KrasheninnikovA. V.ChenF., “Tailoring the optical properties of atomically-thin WS2 via ion irradiation,” Nanoscale (2017), doi: 10.1039/C7NR02025B.NANOHL2040-3372

[33] K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. C. Neto. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439.

[34] Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys., 2011, 13: 15546-15553.

[35] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, A. Mishchenko. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol., 2013, 8: 100-103.

[36] J. He, N. Kumar, M. Z. Bellus, H.-Y. Chiu, D. He, Y. Wang, H. Zhao. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nat. Commun., 2014, 5: 5622.

[37] E. C. T. O’Farrell, A. Avsar, J. Y. Tan, G. Eda, B. Özyilmaz. Quantum transport detected by strong proximity interaction at a graphene-WS2 van der Waals interface. Nano Lett., 2015, 15: 5682-5688.

[38] S. Omar, B. J. van Wees. Graphene-WS2 heterostructures for tunable spin injection and spin transport. Phys. Rev. B, 2017, 95: 081404.

[39] H. Mu, Z. Wang, J. Yuan, S. Xiao, C. Chen, Y. Chen, Y. Chen, J. Song, Y. Wang, Y. Xue, H. Zhang, Q. Bao. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photon., 2015, 2: 832-841.

[40] Z. Wang, H. Mu, J. Yuan, C. J. Zhao, Q. Bao, H. Zhang. Graphene-Bi2Te3 heterostructure as broadband saturable absorber for ultra-short pulse generation in Er-doped and Yb-doped fiber lasers. IEEE J. Sel. Top. Quantum Electron., 2017, 23: 195-199.

[41] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 2006, 97: 187401.

[42] A. Berkdemir, H. R. Gutierrez, A. R. Botello-Mendez, N. Perea-Lopez, A. L. Elias, C.-I. Chia, B. Wang, V. H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, M. Terrones. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep., 2013, 3: 1755.

[43] S. Zhang, N. Dong, N. McEvoy, M. O’Brien, S. Winters, N. C. Berner, C. Yim, Y. Li, X. Zhang, Z. Chen, L. Zhang, G. S. Duesberg, J. Wang. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films. ACS Nano, 2015, 9: 7142-7150.

[44] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 1990, 26: 760-769.

[45] X. Zhang, A. Selkirk, S. Zhang, J. Huang, Y. Li, Y. Xie, N. Dong, Y. Cui, L. Zhang, W. J. Blau, J. Wang. MoS2/carbon nanotube core-shell nanocomposites for enhanced nonlinear optical performance. Chemistry, 2016, 23: 3223.

Ziqi Li, Chen Cheng, Ningning Dong, Carolina Romero, Qingming Lu, Jun Wang, Javier Rodríguez Vázquez de Aldana, Yang Tan, Feng Chen. Q-switching of waveguide lasers based on graphene/WS2 van der Waals heterostructure[J]. Photonics Research, 2017, 5(5): 05000406.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!