激光与光电子学进展, 2014, 51 (9): 091401, 网络出版: 2014-08-15   

激光熔覆热影响区及残余应力分布特性研究 下载: 1076次

Study of Thermal-Mechanical Coupling Behavior in Laser Cladding
作者单位
1 南京铁道职业技术学院动力工程学院,江苏南京210031
2 南京航空航天大学机电学院,江苏南京210016
摘要
采用三维有限元分析方法对16MnR钢激光熔覆Ni-Cr-B-Si合金粉末过程进行了仿真分析,得到了不同激光熔覆参数(激光功率、扫描速度、光斑直径)下的温度场及残余应力分布。采用两种方法来判断最优的激光熔覆工艺参数:1)利用正交试验的直观分析法对基体材料热影响区深度进行进一步分析以获得最优参数;2)利用最大残余拉应力和材料断裂强度的比值来选择最优参数。两种方法得到的最优激光熔覆参数相同。
Abstract
A three dimensional finite element model is employed to simulate the cladding process of Ni-Cr-BSi coatings on 16MnR steel under different parameters including laser power, scanning speed and spot diameter.The temperature and residual stress distribution, the depth of the heat affected zone (HAZ) and the optimized parameters for laser cladding remanufacturing technology are obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ are performed to study the influence of different cladding parameters.A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate is proposed for optimization of the remanufacturing parameters. The results show well agreement with that of the HAZ analysis.
参考文献

[1] Hussam El Cheikh, Bruno Courant, Samuel Branchu, et al.. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process [J]. Optics and Lasers in Engineering, 2012, 50(3): 413-422.

[2] Igor Smurov. Laser cladding and laser assisted direct manufacturing [J]. Surface & Coatings Technology, 2008, 202(18):4496-4502.

[3] T Baldridge, G Poling, E Foroozmehr, et al.. Laser cladding of inconel 690 on inconel 600 superalloy for corrosion protection in nuclear applications [J]. Optics and Lasers in Engineering, 2013, 51(2): 180-184.

[4] I Manna, J Dutta Majumdar, B Ramesh Chandra, et al.. Laser surface cladding of Fe-B-C, Fe-B-Si and Fe-BC-Si-Al-C on plain carbon steel [J]. Surface & Coatings Technology, 2006, 201(1-2): 434-440.

[5] J Leunda, C Soriano, C Sanz, et al.. Laser cladding of vanadium-carbide tool steels for die repair [J]. Physics Procedia,2011, 12(A): 345-352.

[6] E Díaz, J M Amado, J Montero, et al.. Comparative study of Co-based alloys in repairing low Cr-Mo steel components by laser cladding [J]. Physics Procedia, 2012, 39: 368-375.

[7] W C Tseng, J N Aoh. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48: 141-152.

[8] Hao Mingzhong, Sun Yuwen. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach [J]. International Journal of Heat and Mass Transfer, 2013, 64: 352-360.

[9] 刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 1203007.

    Liu Hao, Yu Gang, He Xiuli, et al.. Three- dimensional numerical simultion of transient temperature field and coating geometry in powder feeding laser cladding [J]. Chinese J Lasers, 2013, 40(12): 1203007.

[10] 石世宏, 王晨, 徐爱琴, 等. 基于环形光光内送粉激光熔覆温度场的数值模[J]. 中国激光, 2012, 39(3): 0303002.

    Shi Shihong, Wang Chen, Xu Aiqin, et al.. Temperature field numerical simulation of laser cladding based on internal powder feeding through a hollow laser beam [J]. Chinese J Lasers, 2012, 39(3): 0303002.

[11] 孙道金, 刘继常, 李钦栋. 激光熔覆纯镍熔池底部组织生长的相场法模拟[J]. 中国激光, 2013, 40(4): 0403005.

    Sun Daojin, Liu Jichang, Li Qindong. Phase-fileld method simulation of microstructure evolution at the bottom of melt pool in coaxial laser cladding [J]. Chinese J Lasers, 2013, 40(4): 0403005.

[12] Tso-Liang Teng, Peng-Hsiang Chang. Effect of residual stresses on fatigue crack initiation life for butt-welded joints[J]. J Materials Processing Technology, 2004, 145(3): 325-335.

[13] C D M Liljedahl, J Brouard, O Zanellato, et al.. Weld residual stress effects on fatigue crack growth behaviour of aluminium alloy 2024-T351 [J]. International J Fatigue, 2009, 31(6): 1081-1088.

[14] G Pouget, A P Reynolds. Residual stress and microstructure effects on fatigue crack growth in AA2050 friction stir welds [J]. International J Fatigue, 2008, 30(3): 463-472.

[15] 陈运远. 机械工程材料性能数据手册[M]. 北京: 机械工业出版社, 1995. 105-106.

    Chen Yunyuan. Performance Data Sheet of Mechanical Engineering Material [M]. Beijing: Mechanical industry Publishing Co., 1995. 105-106.

[16] 曾超. 激光熔覆热损伤评估及其检测研究[D].南京: 南京航空航天大学, 2013. 25-26.

    Zeng Chao. A Study of Thermal Damage for Laser Cladding Technology and Its Detection [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. 25-26.

[17] I A Roberts, C J Wang, R Esterlein, et al.. A three- dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing [J]. International J Machine Tools & Manufacture, 2009,49(12-13): 916-923.

[18] Ehsan Toyserkani, Amir Khajepour, Steve Corbin. 3- D finite element modeling of laser cladding by powder injection:effects of laser pulse shaping on the process [J]. Optics and Lasers in Engineering, 2004, 41(6): 849-867.

[19] B Brickstad, B L Josefsonb. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes [J].International J Pressure Vessels and Piping, 1998, 75(1): 1l-25.

[20] Dean Deng, Hidekazu Murakawa. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements [J]. Computational Materials Science, 2006, 37(3): 269-277.

[21] Goldak J,Bibby M,Moore J, et al.. Computer modeling of heat flow in welds [J]. Metallurgical Transactions B, 1986, 17(3): 587-600.

[22] J W Hirsch, L G Olson, Z Nazir, et al.. Axisymmetric laser welding of ceramics: comparison of experimental and finite element results [J]. Opt Lasers Eng, 1998, 29(6): 465-484.

[23] M Alimardani, E Toyserkani, J P Huissoon. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process [J]. Opt Lasers Eng, 2007, 45(12): 1115-1130.

[24] B S Yilbas, S S Akhtar, C Karatas. Laser surface treatment of Inconel 718 alloy: thermal stress analysis [J]. Opt Lasers Eng, 2010, 48(7-8): 740-749.

[25] Chao Zeng, Wei Tian, Wen-He Liao, et al.. Study of laser cladding thermal damage: a quantified microhardness method[J]. Surface & Coatings Technology, 2013, 236: 309-314.

[26] Henry K hler, Knut Partes, Joana Rebelo Kornmeier, et al.. Residual stresses in steel specimens induced by laser cladding and their effect on fatigue strength [J]. Physics Procedia, 2012, 39: 354-361.

[27] 赵少汴, 王忠保. 抗疲劳设计方法与设计[M]. 北京: 机械工业出版社, 1997. 96.

    Zhao Shaobian, Wang Zhongbao. Methods and Data of the Anti-Fatigue Design [M]. Beijing: Mechanical Industry Publishing Co., 1997. 96.

华亮, 田威, 廖文和, 曾超. 激光熔覆热影响区及残余应力分布特性研究[J]. 激光与光电子学进展, 2014, 51(9): 091401. Hua Liang, Tian Wei, Liao Wenhe, Zeng Chao. Study of Thermal-Mechanical Coupling Behavior in Laser Cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091401.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!