Matter and Radiation at Extremes, 2020, 5 (1): 018202, Published Online: Feb. 18, 2020  

Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids

Author Affiliations
Department of Chemistry, Institute of Shock Physics, and Materials Science and Engineering, Washington State University, Pullman, Washington 99164, USA
Abstract
Recent advances in high-pressure technologies and large-scale experimental and computational facilities have enabled scientists, at an unprecedented rate, to discover and predict novel states and materials under the extreme pressure-temperature conditions found in deep, giant-planet interiors. Based on a well-documented body of work in this field of high-pressure research, we elucidate the fundamental principles that govern the chemistry of dense solids under extreme conditions. These include: (i) the pressure-induced evolution of chemical bonding and structure of molecular solids to extended covalent solids, ionic solids and, ultimately, metallic solids, as pressure increases to the terapascal regime; (ii) novel properties and complex transition mechanisms, arising from the subtle balance between electron hybridization (bonding) and electrostatic interaction (packing) in densely packed solids; and (iii) new dense framework solids with high energy densities, and with tunable properties and stabilities under ambient conditions. Examples are taken primarily from low-Z molecular systems that have scientific implications for giant-planet models, condensed materials physics, and solid-state core-electron chemistry.

Choong-Shik Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids[J]. Matter and Radiation at Extremes, 2020, 5(1): 018202.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!