强激光与粒子束, 2011, 23 (6): 1421, 网络出版: 2011-07-04   

光学薄膜中节瘤缺陷研究进展

Research progress of nodular defect in optical coatings
作者单位
1 中国科学院上海光学精密机械研究所 强激光材料重点实验室, 上海 201800
2 中国科学院 研究生院, 北京 100049
摘要
结合本实验室及国内外同行的工作进展,概括性地介绍了光学薄膜中节瘤缺陷的生长特性、结构特征和损伤特性,以及激光预处理和破坏修复技术的研究进展。节瘤种子的尺寸、形状和表面特性决定了节瘤缺陷的尺寸、边界结构的连续性和表面形貌特征。节瘤种子的来源主要有基底加工和清洗过程的残留物,镀膜过程中真空室的污染和蒸发材料的喷溅,并给出了相应的抑制方法。节瘤的电场增强效应是导致节瘤缺陷易损伤的另一个重要原因。节瘤缺陷的激光预处理和破坏坑的修复技术可以提高光学薄膜的抗激光损伤能力。
Abstract
Based on our achievements and that of peers of home and abroad, several aspects of nodular defect are summarized and reviewed. The size, shape and surface properties of nodule seed determinate the size, boundaries continuity and topography of nodule. The seed sources are mainly the residue during the processing and cleaning of substrate, contamination from the coating chamber and particulate from the evaporation source material. The corresponding methods to eliminate the seed source are given. The electronic field enhancement is another main reason for the damage susceptibility of nodule. Laser conditioning and mitigation method can improve the capacity of laser damage resistance.
参考文献

[1] Staggs M C, Balooch M, Kozlowski M R et al. In-situ atomic-force microscopy of laser-conditioned and laser-damaged HfO2/SiO2 dielectric mirror coatings[C]//Proc of SPIE. 1992, 1624: 375-385.

[2] Fornier A, Cordillot C, Bernardino D, et al. Characterization of HR coationgs for the megajoule laser transport mirrors[C]//Proc of SPIE. 1997, 2966: 327-341.

[3] 张东平,范平,邵建达,等.光学薄膜中的包裹物微缺陷[J].激光与光电子学进展, 2006, 43(4): 34-39.(Zhang Dongping, Fan Ping, Shao Jianda, et al. Inclusion microdefects in optical films. Laser and Optoelectronics Progress, 2006, 43(4): 34-39)

[4] Spalvins T, Brainard W A. Nodular growth in thick-sputtered metallic coatings[J]. J Vac Sci Technol, 1974, 11(6): 1186-1192.

[5] Liao B, Smith D J, McIntyre B. The formation and development of nodular defects in optical coatings[C]//Laser Induced Damage in Optical Material. 1985, 746: 305-318.

[6] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Characteristics of nodular defect in HfO2/SiO2 multilayer optical coatings[J]. Appl Surf Sci, 2010, 256(12): 3783-3788.

[7] Shan Yongguang, He Hongbo, Wei Chaoyang, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Appl Opt, 2010, 49(22): 4290-4295.

[8] Tench R J, Chow R, Kozlowski M R. Characterization of defect geometries in multilayer optical coatings[J]. J Vac Sci Technol A, 1994, 12(5): 2808-2813.

[9] Letts S A, Myers D W, Witt L A. Ultrasmooth plasma polymerized coatings for laser fusion targets[J]. J Vac Sci Technol, 1981, 19(3): 739-742.

[10] Stolz C J, Tench R J, Kozlowski M R, et al. A comparison of nodular defect seed geometries from different deposition techniques[C]//Proc of SPIE. 1996, 2714: 374-382.

[11] Kozlowski M R, Chow R. The role of defects in laser damage of multilayer coatings[C]//Proc of SPIE. 1994, 2114: 640-649.

[12] Staggs M C, Kozlowski M R, Siekhaus W J, et al. Correlation of damage threshold and surface geometry of nodular defects on HR coatings as determined by in-situ atomic force microscopy[C]//Proc of SPIE. 1993, 1848: 234-242.

[13] Kozlowski M R, DeFord J F, Staggs M C. Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling[C]//AIP Conference Proceedings. 1993, 288: 44-49.

[14] Kozlowski M R, Tench R J, Chow R, et al. Influence of defect shape on laser-induced damage in multilayer coatings[C]//Proc of SPIE. 1994, 2253: 743-750.

[15] Poulingue M, Dijon J, Ignat M, et al. New approach for the critical size of nodular defects: the mechanical connection[C]//Proc of SPIE. 1999, 3578: 370-381.

[16] Liu Xiaofeng, Li Dawei, Zhao Yuan’an, et al. Further investigation of the characteristics of nodular defects[J]. Appl Opt, 2010, 49(10): 1774-1779.

[17] Murphy J K. Effects of surface and thin-film anomolies on miniature infrared filters[C]//Contemporary Infrared Sensors and Instruments,SPIE. 1980, 246: 64.

[18] DeFord J F, Kozlowski M R. Modeling of electric-field enhancement at nodular defects in dielectric mirror coatings[C]//Proc of SPIE. 1993, 1848: 455-472.

[19] Stolz C J, Feit M D, Pistor T V. Laser intensification by spherical inclusions embedded within multilayer coatings[J]. Appl Opt, 2006, 45(7): 1594-1601.

[20] Stolz C J, Genin F Y. Light intensification by nodular defects in multilayer coatings[C]//OSA/OIC. 2004, TuF9.

[21] Stolz C J, Hafeman S, Pistor T V. Light intensification modeling of coating inclusions irradiated at 351 and 1 053 nm[J]. Appl Opt, 2008, 47(13): C162-C166.

[22] Genin F Y, Stolz C J, Kozlowski M R. Growth of laser-induced damage during repetitive illumination of HfO2-SiO2 multilayer mirror and polarizer coatings[C]//Proc of SPIE. 1997, 2966: 273-282.

[23] Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. Nodule ejection[C]//Proc of SPIE. 1999, 3578: 387-397.

[24] Wolfe J, Qiu R, Stolz C, et al. Laser damage resistant pits in dielectric coatings created by femtosecond laser machining[C]//Proc of SPIE. 2009: 750405.

单永光, 刘晓凤, 贺洪波, 范正修. 光学薄膜中节瘤缺陷研究进展[J]. 强激光与粒子束, 2011, 23(6): 1421. Shan Yongguang, Liu Xiaofeng, He Hongbo, Fan Zhengxiu. Research progress of nodular defect in optical coatings[J]. High Power Laser and Particle Beams, 2011, 23(6): 1421.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!