中国激光, 2016, 43 (11): 1113001, 网络出版: 2016-11-10   

基于非对称单缝结构的表面等离子体定向激发

Directional Excitation of Surface Plasmons Based on Asymmetric Single-slit Structure
作者单位
1 南开大学电子信息与光学工程学院天津市光电传感器与传感网络技术重点实验室, 天津 300350
2 南开大学电子信息与光学工程学院现代光学研究所, 天津 300350
摘要
表面等离子体的定向激发在光通信、生物传感、集成电路、纳米刻蚀等领域具有重要应用。提出了一种L型非对称单缝的表面等离子体定向激发结构。无须改变缝隙的结构参数,通过调节入射光的入射角度即可实现表面等离子体的单向和双向激发,起到全光开关调制的作用。详细阐述了L型缝隙的加工制作流程,利用COMSOL Multiphysics仿真软件对缝隙结构进行模拟仿真。仿真结果表明,非对称单缝结构可实现消光比在-16 dB~15 dB范围内连续可调的表面等离子体定向激发。该结构体积小,便于操控,易于加工,对微纳等离子体光学器件的研究具有指导意义。
Abstract
The directional excitation of surface plasmons play an important role in optical communication, biosensing, integrated circuit and nanolithography, etc. An asymmetric L-type single-slit structure which can excite surface plasmons directionally is proposed. Without changing structural parameters of the slit, both the unidirectional and the bidirectional excitations of surface plasmons can be realized by changing the incidence angle. The structure can also play a role in all-optical switch modulation. The machining process of the L-type single-slit is elaborated in detail. The slit structure is simulated by the COMSOL Multiphysics software. The results show that the asymmetric single-slit structure can realize the directional excitation of surface plasmons with a continuously adjustable extinction ratio from -16 dB to 15 dB. This single-slit structure occupies small area and is convenient for manipulation and machining, and it has guiding significance for the research on micro-nano plasmon optical devices.
参考文献

[1] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

[2] Barnes W L, Alain D, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[3] Fu Y L, Hu X Y, Lu C C, et al. All-optical logic gates based on nanoscale plasmonic slot waveguides[J]. Nano Letters, 2012, 12(11): 5784-5790.

[4] Skorobogatiy M, Kabashin A V. Photon crystal waveguide-based surface plasmon resonance biosensor[J]. Applied Physics Letters, 2006, 89(14): 143518.

[5] 张 喆, 柳 倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究[J]. 物理学报, 2013, 62(6): 060703.

    Zhang Zhe, Liu Qian, Qi Zhimei. Study of Au-Ag alloy film based infrared surface plasmon resonance sensors[J]. Acta Physica Sinica, 2013, 62(6): 060703.

[6] Chen Z, Hu R, Cui L N, et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems[J]. Optics Communications, 2014, 320(2): 6-11.

[7] He M D, Gong Z Q, Li S, et al. Plasmonic coupler based on the nanoslit with bump[J]. Optics Communications, 2011, 284(1): 368-372.

[8] Li D D, Zhang D H, Yan C C, et al. Directional surface plasmon-polariton excitation by a compact slot partially filled with dielectric[J]. Optics Express, 2013, 21(5): 5949-5956.

[9] 熊志成, 朱丽霖, 刘 诚, 等. 基于纳米天线的多通道高强度定向表面等离子体波激发[J]. 物理学报, 2015, 64(24): 247301.

    Xiong Zhicheng, Zhu Lilin, Liu Cheng, et al. High-intensity directional surface plasmonic excitation based on the multi metallic slits with nano-antenna[J]. Acta Physica Sinica, 2015, 64 (24): 247301.

[10] Liu D L, Li K, Ho C C, et al. Compact surface-plasmon-polariton dichroic splitter with high splitting ratio based on three cascaded grooves[J]. Journal of the Optical Society of America B, 2015, 32(6): 1125-1131.

[11] Lin J, Mueller J P, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334.

[12] Devaux E, Ebbesen T W, Weeber J, et al. Launching and decoupling surface plasmons via micro-gratings[J]. Applied Physics Letters, 2003, 83(24): 4936-4938.

[13] López-Tejeira F, Rodrigo S G, Martín-Moreno L, et al. Efficient directional nanoslit couplers for surface plasmons[J]. Nature Physics, 2007, 3(5): 324-328.

[14] Xu T, Zhao Y, Gan D, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501.

[15] Lerosey G, Pile D F P, Matheu P, et al. Controlling the phase and amplitude of plasmon sources at a subwavelength scale[J]. Nano Letters, 2009, 9(1): 327-331.

[16] Wang Y K, Zhang X R, Tang H J, et al. A tunable directional surface plasmon polaritons source[J]. Optics Express, 2009, 17(22): 20457-20464.

[17] Chen J J, Sun C W, Li H Y, et al. Ultra-broadband directional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit[J]. Nanoscale, 2014, 6: 13487-13493.

[18] Chen J J, Li Z, Zhang X, et al. Submicron bidirectional all-optical plasmonic switches[J]. Scientific Reports, 2012, 3: 1451.

[19] Chen J J, Li Z, Yue S, et al. Highly efficient all-optical control of surface-plasmon-polariton generation based on a compact asymmetric single slit[J]. Nano Letters, 2011, 11(7): 2933-2937.

[20] Xia N, Yang Y Q, Li Q, et al. Tunable directional long-range surface plasmon polaritons launching based on nanoslits[C]. SPIE, 2015, 9673: 96730W.

胡玄, 刘会刚, 刘波. 基于非对称单缝结构的表面等离子体定向激发[J]. 中国激光, 2016, 43(11): 1113001. Hu Xuan, Liu Huigang, Liu Bo. Directional Excitation of Surface Plasmons Based on Asymmetric Single-slit Structure[J]. Chinese Journal of Lasers, 2016, 43(11): 1113001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!